в чем измеряется вероятность события

Математическая вероятность. Ее типы, в чем измеряется вероятность

Типы вероятности

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события Вам будет интересно: Что такое имперские города? В какой стране они были?

Существует четыре типа, каждый со своими ограничениями. Ни один из этих подходов не является неправильным, но некоторые из них более полезны или более общие, чем другие.

Субъективная вероятность. Которая получена из личного суждения человека о том, может ли произойти конкретный результат. Она не содержит формальных вычислений и отражает только мнения

Некоторые из примеров вероятности

В каких единицах измеряется вероятность:

Математическая обработка

В чем измеряется вероятность в математике?

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Надеюсь, теперь мы ответили на вопрос, в чем измеряется вероятность.

Заключение.

Революционным открытием физики XX века стал случайный характер всех физических процессов, происходящих в субатомных масштабах и подчиняющихся законам квантовой механики. Сама волновая функция развивается детерминированно до тех пор, пока не производится никаких наблюдений. Но, согласно преобладающей Копенгагенской интерпретации, случайность, вызванная коллапсом волновой функции при наблюдении, является фундаментальной. Это означает, что теория вероятностей необходима для описания природы. Другие так и не смирились с потерей детерминизма. Альберт Эйнштейн лихо заметил в письме Максу Борну: «Я убежден, что Бог не играет в кости». Хотя существуют альтернативные точки зрения, такие как квантовая декогерентность, являющаяся причиной кажущегося случайного коллапса. В настоящее время среди физиков существует твердое согласие в том, что теория вероятностей необходима для описания квантовых явлений.

Источник

Математическая вероятность. Ее типы, в чем измеряется вероятность

Типы вероятности

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события Вам будет интересно: Философствовать – это опасная игра или потребность души?

Существует четыре типа, каждый со своими ограничениями. Ни один из этих подходов не является неправильным, но некоторые из них более полезны или более общие, чем другие.

Субъективная вероятность. Которая получена из личного суждения человека о том, может ли произойти конкретный результат. Она не содержит формальных вычислений и отражает только мнения

Некоторые из примеров вероятности

В каких единицах измеряется вероятность:

Математическая обработка

В чем измеряется вероятность в математике?

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Надеюсь, теперь мы ответили на вопрос, в чем измеряется вероятность.

Заключение.

Революционным открытием физики XX века стал случайный характер всех физических процессов, происходящих в субатомных масштабах и подчиняющихся законам квантовой механики. Сама волновая функция развивается детерминированно до тех пор, пока не производится никаких наблюдений. Но, согласно преобладающей Копенгагенской интерпретации, случайность, вызванная коллапсом волновой функции при наблюдении, является фундаментальной. Это означает, что теория вероятностей необходима для описания природы. Другие так и не смирились с потерей детерминизма. Альберт Эйнштейн лихо заметил в письме Максу Борну: «Я убежден, что Бог не играет в кости». Хотя существуют альтернативные точки зрения, такие как квантовая декогерентность, являющаяся причиной кажущегося случайного коллапса. В настоящее время среди физиков существует твердое согласие в том, что теория вероятностей необходима для описания квантовых явлений.

Источник

Учебник по теории вероятностей

1.2. Классическое определение вероятности

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным, если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу, если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Полезные материалы

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

Обучающие статьи с примерами

Примеры решений на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m=n=10. Следовательно, Р(А)=1. Событие А достоверное.

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события.
Число случаев, когда среди этих двух шаров будут два белых, равно в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события.
Искомая вероятность
в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m=0, n=15. Следовательно, искомая вероятность р=0. Событие, заключающееся в вынимании синего шара, невозможное.

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение. Количество элементарных исходов (количество карт) n=36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А, m=9. Следовательно,
в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е.
в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события.

Найдем число исходов, благоприятствующих интересующему нас событию: трех женщин можно выбрать из четырех в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность событияспособами; при этом остальные четыре человека должны быть мужчинами, их можно отобрать в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность событияспособами. Следовательно, число благоприятствующих исходов равно в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события.

Искомая вероятность
в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события.

Источник

Теория вероятностей, формулы и примеры

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!

Основные понятия

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.

Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.

Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:

Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.

Формулы по теории вероятности

Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.

Случайные события. Основные формулы комбинаторики

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Классическое определение вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A

Таким образом, вероятность любого события удовлетворяет двойному неравенству:

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Геометрическое определение вероятности

Геометрическая вероятность события А определяется отношением:

P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно

Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.

Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?

У нас есть отличные курсы по математике для учеников с 1 по 11 классы — приглашаем на вводный урок!

Сложение и умножение вероятностей

Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

P(A + B) = P(A) + P(B)

Эта теорема справедлива для любого числа несовместных событий:

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:

Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:

P(A + B) = P(A) + P(B) − P(AB)

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:

P(AB) = P(A) * P(B)

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.

Найдем вероятности того, что формула содержится:

А — формула содержится в первом справочнике;

В — формула содержится во втором справочнике;

С — формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.

Формула полной вероятности и формула Байеса

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

По теореме умножения вероятностей:

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Аналогично, для остальных гипотез:

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.

Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Формула Бернулли

При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.

Биномиальное распределение — распределение числа успехов (появлений события).

Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.

Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂

Наивероятнейшее число успехов

Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:

Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.

Формула Пуассона

При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.

В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Здесь λ = np обозначает среднее число появлений события в n испытаниях.

Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.

События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).

При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.

Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.

Ответ: ориентировочно 0,18.

Теоремы Муавра-Лапласа

Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.

Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

в чем измеряется вероятность события. Смотреть фото в чем измеряется вероятность события. Смотреть картинку в чем измеряется вероятность события. Картинка про в чем измеряется вероятность события. Фото в чем измеряется вероятность события

Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:

Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.

Источник

Алгебра

План урока:

Частота и вероятность

В мире происходят события, которые можно предсказать. Например, можно предсказать приезд лифта после того, как человек нажмет кнопку его вызова. Астрономы могут заранее предсказывать солнечные и лунные затмения.

Однако нередко нам приходится иметь дело с событиями, результат которых заранее предсказать невозможно. Не получается заранее сказать, упадет ли монетка при подбрасывании орлом вверх, также как нельзя заранее предсказать поломку прибора. Такие события называются случайными.

Случайные события обычно могут произойти только в определенной ситуации. Так, событие «выпадение решки» может произойти только при броске монеты. В математике подбрасывание монетки будет называться испытанием или экспериментом.

Здесь не следует воспринимать термин «эксперимент» как некое научное исследование. Испытанием может оказаться любая жизненная ситуация. Приведем несколько примеров опытов и соответствующих им случайных событий:

Здесь важно отметить, что для математики не важно, является ли событие по-настоящему случайным. Возможно, что автобус ходит строго по расписанию, и человек, знающий его, точно может определить, через сколько минут он приедет. Но если рядом стоит другой человек, не знающий этой информации, то для него приезд автобуса будет случайным событием.

Предположим, что есть возможность провести какой-то эксперимент множество раз. Например, кубик можно бросить 500 раз. Обозначим это число, количество экспериментов, как n. В ходе серии этих бросков шестерка выпала, например, 85 раз. Обозначим эту величину, количество произошедших случайных событий, как m. Само событие «выпадение шестерки» обозначим как А. Тогда отношение m/n будет называться частотой случайного события А. В данном случае частота события А равна

Наблюдения показывают, что если условия экспериментов примерно одинаковы, а их число велико, то частота одного и того же события будет примерно одинаковой. Чем больше число испытаний, тем обычно ближе частота события к некоторому постоянному числу. Это число и называют вероятностью случайного события А.

Грубо говоря, частота и вероятность событий – это примерно одно и то же. Частоту определяют на практике, входе эксперимента, а вероятность можно рассчитать аналитически.

Вероятность – это величина, которая характеризует возможность события произойти. Если она близка к единице, то событие, скорее всего, произойдет. Если она близка к нулю, то событие, скорее всего, не случится. Для обозначения вероятности используется буква Р. Если надо указать вероятность конкретного события А, то его записывают как Р(А).

Вероятность – это безразмерная величина, то есть для нее нет никакой единицы измерения. Она может принимать значение от 0 до 1. Иногда на практике ее указывают в процентах. Например, вероятность 0,5 означает 50%. Чтобы перевести вероятность в проценты, ее надо просто умножить на 100.

Элементарные события

Часто одно случайное событие можно представить как результат нескольких случайных событий. Например, событие «выпадение на кубике четного числа» произойдет в том случае, если случится хотя бы одно из следующих событий:

Если событие нельзя «разбить» на более простые события, то его называют элементарным событием. Считается, что в ходе испытания может произойти только одно элементарное событие. Так, при броске кубика произойдет одно из 6 элементарных событий:

В большинстве случаев вероятность элементарных событий одинакова. Действительно, нет причин полагать, что при броске кубика шестерка будет выпадать чаще двойки. Если у двух элементарных событий одинаковая вероятность, то их называют равновозможными событиями.

Если в результате эксперимента происходит одно из равновозможных событий, число которых равно n, то вероятность каждого из них принимается равной дроби 1/n.

Например, при броске кубика может произойти 6 равновозможных событий. Значит, вероятность каждого из них равна 1/6. При броске монетки она может выпасть либо орел, либо решка. Этих событий два, и они равновозможны, поэтому их вероятность равна 1/2, то есть 0,5.

Пример. В урне 20 шариков, один из которых окрашен в желтый цвет. Какова вероятность, что человек, вытаскивающий вслепую один из шариков, вынет именно желтый шар?

Решение. Так как шаров 20, то возможны 20 равновозможных событий, одно из которых – вытаскивание желтого шара. Его вероятность равна 1/20 = 0,05

Пример. Вася составил произвольную последовательность из букв А, Б, В, Г, Д, и записал ее на бумаге. Каждую букву Вася использовал один раз. Аналогично свою последовательность записал и Петя. Какова вероятность, что они оба загадали одну и ту же последовательность.

Решение. Вася записал перестановку 5 букв. Общее количество таких перестановок равно 5! = 1•2•3•4•5 = 120. Все последовательности равновероятны. Значит, вероятность того, что они совпали, равна 1/120.

Противоположные события

Заметим, что если сложить вероятности всех элементарных событий, которые возможны в ходе эксперимента, то получится единица. Действительно, при броске монеты возможны два события с вероятностью 1/2. Сумма их вероятностей составляет 1/2 + 1/2 = 1.

Это правило действует и в том случае, когда речь идет о не равновозможных событиях. Так, при выстреле по мишени возможны два варианта развития событий – попадание в цель или промах. Пусть вероятность попадания в цель равна 0,3. Это значит, что вероятность промаха составляет 0,7, так как только в этом случае сумма этих вероятностей будет равна единице:

Заметим, что при стрельбе стрелок либо попадет в цель, либо промажет. То есть одно из двух этих событий обязательно произойдет, но только оно одно. Подобные события называют противоположными.

Противоположными являются такие события, как:

Стоит отметить, что победа одной и победа другой команды в футбольном матче – это не противоположные события, так как возможен третий исход – ничья. Однако в ряде спортивных состязаний ничья невозможна, и тогда победы команд – это противоположные события.

Очевидно, что сумма вероятностей противоположных событий равна единице.

Пример. Вероятность того, что рабочий изготовит годную деталь, оценивается в 0,97. Чему равна вероятность изготовления бракованной детали?

Решение. Изготовление бракованной детали (обозначим это событие как А) и получение годного изделие (событие Б) – это два противоположных события. Их сумма равна единице

По условию Р(А) = 0,97. Тогда

Перенесем в равенстве слагаемое 0,97 в правую часть и получим:

Сложение вероятностей

До этого мы рассматривали элементарные события. Однако значительно чаще нас интересуют более сложные события, которые состоят из элементарных. Как рассчитать их вероятность?

Введем понятие несовместных событий.

Так, при броске кубика не может сразу выпасть пятерка и четное число (потому что 5 – это нечетное число). Хоккейный матч не может одновременно окончиться и ничьей, и победой одной из команд.

Заметим, что любые два элементарных события несовместны, также как и любые два противоположных события.

Для несовместных событий справедлива теорема сложения вероятностей.

Пример. В забеге на 1500 метров участвуют два китайца. Эксперты полагают, что вероятность победы Мао Луня составляет 0,16, а шансы Ван Юнпо оцениваются в 0,14. Если эти оценки справедливы, то каковы шансы того, что чемпионом станет китаец?

Решение. Обозначим победу Мао Луня как событие А, а победу Ван Юнпо – как Б. Очевидно, что события несовместны, так как победитель будет лишь один. По Условию Р(А) = 0,16, а Р(В) = 0,14.

Событие «победа китайца» произойдет, если выиграет хоть один из этих спортсменов, поэтому произведем сложение вероятностей:

Р(А или В) = Р(А) + Р(В) = 0,16 + 0,14 = 0,3

Заметим, что выполнять сложение вероятностей событий можно и в случае, когда несовместных событий больше двух.

Пример. При стрельбе по мишени стрелок выбьет 10 баллов (максимальный результат) с вероятностью 0,2, 9 баллов с вероятностью 0,25, 8 баллов с вероятностью 0,15. Какова вероятность, что стрелок НЕ наберет даже 8 баллов одним выстрелом?

Решение. Здесь несовместные события – это выбивание 10 (событие А), 9 (В) и 8 (С) баллов. Действительно, в ходе одного выстрела стрелок покажет только один результат. Если одно из этих событий случится, то спортсмен получит не менее 8 баллов. Вероятность этого события равна:

Р(А или В или С) = 0,2 + 0,25 + 0,15 = 0,6

Но нас спрашивают о другом, о вероятности того, что стрелок НЕ наберет 8 очков. Очевидно, что он их либо наберет, либо нет. Значит, это противоположные события, поэтому сумма равняется 1. Мы посчитали, что стрелок наберет 8 баллов с вероятностью 0,6. Значит, он не наберет их с вероятностью

Пример. В урне лежит 500 шариков, из которых 120 являются черными. Человек вслепую вытаскивает из урны один шар. Какова вероятность, что он будет черным.

Решение. Присвоим каждому шару номер от 1 до 500, причем первые 120 номеров получат черные шары. Обозначим вероятность того, что вытащат шар с номером n, как Р(n). Очевидно, что события «выбран шар 1», «выбран шар 2», … «выбран шар 500» – это элементарные и равновозможные события. Их вероятность равна 1/500:

Р(1) = Р(2) = Р(3) =…..=Р(500) = 1/500

Эти события несовместны, как и любые элементарные события. Значит, вероятность того, что вытащат черный шар, равна сумме вероятностей:

Р(выбран черный шар) = Р(1) + Р(2) + … + Р(120)

В этой сумме 120 слагаемых, каждое из которых равно 1/500. Следовательно, вся сумма равна произведению 120 и 500

Р(выбран черный шар) = 120•(1/500) = 120/500 = 0,24

В этом примере рассматривался особый случай, когда все элементарные события (вытаскивание конкретного шарика) равновозможны, и несколько из них приводили к одному событию (вытаскиванию черного шара). В итоге мы получили, что вероятность этого события равна отношению числа «благоприятных» для него равновозможных событий (120) к общему числу этих событий (500). Такой же результат мы получим при рассмотрении любой схожей задачи.

В результате мы получили одну из основных формул теории вероятности.

Пример. Компьютер случайным образом генерирует число от 1 до 200. Вероятность появления каждого числа одинакова. Какова вероятность того, что он сгенерирует число от 51 до 75 (включительно)?

Решение. Задача предполагает 200 равновозможных исходов события. Из них 25 (между 51 и 75 находится 25 чисел) являются «благоприятными». Тогда вероятность описанного события равна отношению 25 к 200:

Р = 25/200 = 1/8 = 0,125

Ещё раз напомним принципиальный момент. Такой метод решения задач может быть применен только в том случае, когда все элементарные события равновероятны!

Пример. Изготовлено 10 велосипедов, но из них 3 – с дефектом. Необходимо выбрать 4 велосипеда. Каков шанс, что они все будут без дефекта?

Решение. Выбирая 4 велосипеда из 10, мы составляем, с точки зрения комбинаторики сочетание из 10 по 4. Подсчитаем количество возможных сочетаний:

Теперь подсчитаем, сколько можно составить сочетаний, не содержащих дефектный велосипед. Годных велосипедов 10 – 3 = 7, из них надо выбрать 4. Имеем сочетания из 7 по 4:

Вероятность выбора качественных велосипедов равна отношению количества «благоприятных» исходов (их 35) к общему числу возможных исходов:

Пример. В турнире по футболу участвуют команды «Барселона», «Реал», «Атлетико» и «Валенсия». Эксперты полагают, что:

Определите вероятность победы каждой команды в турнире.

Обозначим за х вероятность победы «Валенсии». Шансы «Реала» и «Атлетико» в 1,5 раза выше, а потому составляют по 1,5х. Вероятность триумфа «Барселоны» в 4 раза выше, чем у «Реала», а потому составляют 4•1,5х = 6х.

Ясно, что турнир выиграет лишь одна команда, то есть речь идет о несовместных событиях. С другой стороны, какая-то команда обязательно его выиграет, а потому в вероятности побед команд дадут единицу. В результате, используя формулу сложения вероятностей, можно записать уравнение:

х + 1,5х + 1,5х + 6х = 1

Решив уравнение, мы нашли, что шансы триумфа «Валенсии» составляют всего 0,1. Шансы «Реала» и «Атлетико» равны

Вероятность успеха «Барселоны» составляет

Ответ. «Барселона» – 0,6, «Реал» и «Атлетико» – по 0,15, «Валенсия» – 0,1.

Умножение вероятностей

До этого мы рассматривали сложные события, которые происходили тогда, когда происходило одно из элементарных событий. Например, в забеге, где участвовали два китайца, представитель Поднебесной побеждал, если выигрывал ИЛИ 1-ый китаец, ИЛИ 2-ой. Ключевое слово здесь – ИЛИ.

Однако в некоторых случаях событие происходит лишь тогда, когда происходят одновременно сразу два более простых события. Пусть надо вычислить вероятность того, что при двух подбрасываниях монеты они оба раза упадет на орлом вверх. Возможны 4 случая:

Все 4 исхода удобно представить в виде таблицы. По вертикали запишем результат 1-ого броска монеты, а по горизонтали – второго:

Видно, что лишь в одном из 4 случаев орел выпадет оба раза. Поэтому вероятность будет равна 1/4, или 0,25.

Этот результат можно было получить иначе. Событие ОО случится, только если случатся два события: Орел выпадет при первом броске,и он же выпадет во второй раз. Вероятность каждого из них равна 1/2, или 0,5. Если перемножить эти две вероятности, то снова получим 0,5•0,5.

Рассмотрим более сложный случай с броском двух шестигранных кубиков. Какова вероятность, что в сумме выпадет ровно 12 очков. Снова построим таблицу, по вертикали укажем результат первого броска, по горизонтали – второго, а в ячейках – выпавшую сумму:

Всего получилась табличка с 36 ячейками. Лишь в одной из них стоит число 12. Эта сумма на кубиках будет лишь тогда, когда на обоих кубиках выпадет по шестерке. Так как ячеек 36, а каждая комбинация равновозможна, то вероятность выпадения 12 равна 1/36. Обратите особое внимание, что, например, семерка записана сразу в 6 ячейках (по диагонали, начиная с нижнего левого угла). Значит, вероятность выпадения семерки за 2 броска равна 6/36 = 1/6. И действительно, на практике 7 очков выпадет у игроков в 6 раз чаще, чем 12. Посчитайте с помощью таблицы самостоятельно, какого вероятность выпадения 10 очков.

Как и в случае с монеткой, число вероятность 1/36 можно получив, перемножив вероятность того, что в первой кости выпадет шестерка (1/6), и того, что на второй кости выпадет она же (1/6):

Введем одно важное понятие – независимые события.

Так, какое бы число не выпало на 1-ой кости, вероятность выпадения на второй, например, четверки останется равной 1/6. Как бы ни падала монетка при первом броске, при 2-ом шанс выпадения орла останется равным 1/2.

Для наглядности приведем пример зависимых событий. Пусть А – вероятность победы в забеге одного бегуна, и Р(А) = 0,1. В – вероятность победы второго бегуна, и Р(В) = 0,1. Но очевидно, что победить может лишь один спортсмен. Поэтому, если случится событие А, то вероятность события В изменится – она опустится до нуля.

Таблички, которые мы строили для игры в кости, не всегда удобно использовать, поэтому на практике используют теорему умножения вероятностей.

Ещё раз обратим внимание, что оно действует только для независимых случайных событий.

Пример. Рабочий изготавливает две детали. Вероятность изготовления первой детали с браком составляет 0,05, а второй детали – 0,02. Рабочего оштрафуют, если обе детали будут сделаны с браком. Какова вероятность штрафа для рабочего?

Решение. Штраф выпишут, если одновременно произойдет два независимых события – будет допущен брак при изготовлении И 1-ой, И 2-ой детали. Ключевое слово – И, а не ИЛИ, как в случае со сложением вероятностей. Вероятность такого развития событий найдем, произведя умножение вероятностей:

Умножение вероятностей событий возможно и тогда, когда их больше двух.

Пример. Для победы команды в турнире ей надо выиграть все 4 оставшиеся встречи. Вероятность победы в каждой игре составляет 80%. Какова вероятность победы в турнире?

Решение. Обозначим вероятности победы в отдельных матчах как Р1, Р2, Р3, Р4. По условию они все равны 0,8. Команда станет чемпионом, только если случатся все события. Вероятность этого можно найти, применив формулу умножения вероятностей:

Пример. В первой партии 4% лампочек бракованы, а во второй – 5%. Из каждой партии берут по лампочке. Какова вероятность того, что обе выбранных лампочки окажутся бракованными? Какова вероятность, что они обе окажутся исправными? Какова вероятность, что ровно одна лампа будет бракованной?

Решение. Обозначим выбор бракованной детали из 1-ой партии как событие «брак-1», а выбор годной детали (годная-1). Эти события противоположны, то есть сумма их вероятностей равна единице.

Р(брак-1) + Р(годная-1) = 1

Р(годная-1) = 1 – Р(брак-1)

По условию Р(брак-1) = 0,04. Следовательно, Р(годная-1) = 1 – 0,04 = 0,96.

Аналогично для второй партии можно записать, что Р(брак-2) = 0,05, Р(годная-2) = 0,95.

Будут выбраны две бракованные детали только в том случае, когда произойдут события Р(брак-1) и Р(брак-2). Вероятность этого, по правилу умножения вероятностей, равна:

Две годные детали бут выбраны, если одновременно случатся события Р(годная-1) и Р(годная-2). Это случится с вероятностью

Пример. По мишени стреляют из двух орудий. Вероятность попадания из первого орудия составляет 0,3, а из второго – 0,4. С какой вероятностью по мишени попадет ровно одно орудие?

Решение. Пусть событие «попал-1» означает попадание из 1-ого орудия, а «попал-2» – попадание из 2-ого орудия. Казалось бы, нам надо найти вероятность попадания ИЛИ 1-ого, ИЛИ 2-ого орудия. Однако слово ИЛИ здесь не означает, что вероятности можно просто сложить! Вспомним, что закон сложения вероятностей действует только для несовместных событий. Но выстрелы из орудий таковыми не являются, так как возможно одновременное попадание двух снарядов в мишень.

Введем события «промах-1» и «промах-2», означающие промах из 1-ого или второго орудия. Их вероятности составляют

Р(«промах-1») = 1 – Р(«попал-1») = 1 – 0,3 = 0,7

Р(«промах-2») = 1 – Р(«попал-2») = 1 – 0,4 = 0,6

Одно попадание случится в случае, если произойдет одно из двух «сложных» событий:

Вероятность события А можно рассчитать так:

Р(А) = Р(«попал-1») •Р(«промах-2») = 0,3•0,6 = 0,18

Аналогично рассчитаем и вероятность Б:

Р(Б) = Р(«попал-2») •Р(«промах-1») = 0,4•0,7 = 0,28

События А и Б несовместны, а потому их вероятности можно сложить

Р(А) + Р(Б) = 0,18 + 0,28 = 0,46

Условная вероятность

Иногда можно перемножать вероятности событий, не являющихся в полном смысле слова независимыми. Пусть для того, чтобы произошло событие А, необходимо, чтобы последовательно произошли В и С. В зависимости от того, произошло ли В, вероятность С может отличаться. Например, в урне лежат 4 шарика – 2 красных и 2 желтых. Предположим, что произошло событие В – был вытащен красный шар. Его вероятность равна 0,5. Чему тогда равна вероятность события С – вытаскивания желтого шарика? В урне осталось 3 шара, из них 2 желтых, поэтому Р(С) = 2/3.

С другой стороны, пусть В не произошло, то есть первым был вынут желтый шар. Чему тогда равна вероятность С? В урне снова 3 шарика, но лишь 1 из них желтый. Следовательно, Р(С) = 1/3. Получается, что в зависимости от того, случилось ли В, вероятность Р(С) принимает разные значения. В математике такую вероятность называют условной.

Обозначается она так:

Первая буква в скобках соответствует событию, для которого указываем вероятность, а вторая буква – событию, которое является условием для С.

Если событие А произойдет тогда, когда свершится сначала В, а потом С, то вероятность А также можно найти с помощью умножения

Пример. В урне находится 52 шара, из них на 4 написана буква Т. Из урны последовательно вынимаются два шара. Какова вероятность, что на обоих вытащенных шарах будет буква Т?

Решение. Так как в урне 52 шара, и лишь на 4 есть буква Т, то шанс на то, что первым вытащат именно шар с буквой Т, равен 4/52 = 1/13. Если это событие произошло, то в урне остался 51 шар, и лишь на трех будет находиться нужный символ. Тогда вероятность появления шара с буквой Т составит 3/51 = 1/17. Общая же вероятность появления 2 таких шаров подряд найдется как произведение этих вероятностей:

Р = (1/13)•(1/17) = 1/221 ≈ 0,004525

Эту вероятность можно рассчитать и иначе, по аналогии с задачей про бракованные велосипеды, которая приведена выше. Подсчитаем, сколькими способами можно выбрать 2 шара из 52:

Но всего 6 способами можно выбрать 2 шара из 4:

Поделив число благоприятных исходов на их общее количество, получим искомую вероятность:

Пример. Известно, что вероятность мужчины дожить до 90 лет составляет 5,126%, а до 95 лет – 1,326%. С какой вероятностью мужчина, которому уже сейчас 90 лет, доживет до 95 лет?

Решение. Пусть А – это дожитие до 95 лет, С – дожитие 90-летнего мужчины до 95 лет, В – дожитие до 90 лет. Чтобы отпраздновать 95-летие, человек сначала должен отметить 90-летний юбилей, а потом ещё прожить 5 лет. Другими словами, чтобы случилось А, сначала должно случиться В, а потом событие С при условии В. То есть можно записать

По условию Р(А) = 0,01326, а Р(В) = 0,05126. Зная это, легко найдем Р(С|B):

Р(С|B) = 0,01326/0,05126 ≈ 0,2587

Это и есть вероятность мужчины, отметившего 90-ый день рождения, дожить до 95 лет.

Вероятность и геометрия

Теория вероятности затрагивает и геометрию. Пусть есть отрезок АВ, в середине которого располагается точка С.

Теперь мы ставим на отрезке АВ случайную точку D. С какой вероятностью она попадет наАС, а с какой на ВС? Так как эти отрезки ничем не отличаются, то можно предположить, что события «попадание точки на АС» и «попадание точки на ВС» являются равновероятными событиями. Так и есть. Их вероятность обоих событий составляет 0,5.

Теперь предположим, что точка С выбрана так, что отрезок АС вдвое короче, чем ВС, то есть ВС = 2 АС:

Чему в этом случае равны вероятности попадания случайной точки D на отрезки АС и ВС? Для ответа на этот вопрос раздели ВС надвое с помощью ещё одной точки K:

Получили три одинаковых отрезка АС, СК и КВ. Раз они одинаковы, то и вероятности случайной точки оказаться на каждом из этих отрезков равны:

Отсюда вероятность попадания точки на ВС равна 2/3:

Р(ВС) = Р(СК) + Р(КВ) = 1/3 + 1/3 =2/3

Получили, что вероятность попадания точки на ВС вдвое выше, чем на АС. И при этом ВС вдвое длиннее. И это не случайно. В общем случае верно следующее правило:

Данное свойство может пригодиться не только в геометрии, но и при решении задач.

Пример. Прохожий пришел на остановку автобуса в случайный момент времени. Он знает, что автобус ходит с интервалом в 40 минут, но не знает, когда отъехал предыдущий автобус. С какой вероятностью автобус придется ждать менее 10 минут?

Решение. Построим схему. На ней время будем откладывать по горизонтальной оси. Отметим точки, соответствующие приезду автобуса (А1, А2, А3, А4), и точку, соответствующую приходу прохожего (D):

Ясно, что точка D окажется между какими-то двумя точками, которым соответствуют последовательные прибытия поезда.На рисунке это А2 и А3. В каком случае время ожидания составить менее 10 минут? В том случае, если точка D окажется на «расстоянии» менее 10 минут от точки А3, то есть попадет в отрезок ВА3:

Отрезок ВА3 вчетверо короче отрезка А2А3, поэтому вероятность точку D попасть на него составляет 1/4. Именно такова вероятность, что прохожему придется ждать автобус менее 10 минут.

В случае, когда точка случайным образом ставится не на отрезке, а на плоской фигуре, то справедливо следующее правило:

Пример. В треугольнике АВС проведена средняя линия NM. С какой вероятностью случайная точка, отмеченная на треугольнике АВС, попадет и на треугольник ANM?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *