в чем измеряется удлинение тела

Сила упругости и закон Гука

теория по физике 🧲 динамика

Сила упругости — сила, которая возникает при деформациях тел в качестве ответной реакции на внешнее воздействие. Сила упругости имеет электромагнитную природу.

Деформация — изменение формы или объема тела.

Сила упругости обозначается как F упр. Единица измерения — Ньютон (Н). Сила упругости направлена противоположно перемещению частиц при деформации.

Если после окончания действия внешних сил тело возвращает прежние форму и объем, то деформацию и само тело называю упругими. Если после окончания действия внешних сил тело остается деформированным, то деформацию и само тело называют пластическими, или неупругими.

Примеры упругой деформации:

Примеры пластической деформации:

Закон Гука

При упругой деформации есть взаимосвязь между силой упругости, возникающей в результате деформации, и удлинением деформируемого тела. Эту взаимосвязь первым обнаружил английский ученый Роберт Гук.

Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

x — абсолютное удлинение (деформация), k — коэффициент жесткости тела.

Абсолютное удлинение определяется формулой:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

l0 — начальная длина тела, l — длина деформированного тела, ∆l — изменение длины тела.

Коэффициент жесткости тела определяется формулой:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

E — модуль упругости (модуль Юнга). Каждое вещество обладает своим модулем упругости. S — площадь сечения тела.

Важно! Закон Гука не работает в случае, если деформация была пластической.

Пример №1. Под действием силы 3Н пружина удлинилась на 4 см. Найти модуль силы, под действием которой удлинение пружины составит 6 см.

Согласно третьему закону Ньютона модуль силы упругости будет равен модулю приложенной к пружине силе. В обоих случаях постоянной величиной окажется только жесткость пружины. Выразим ее из закона Гука и применим к каждому из случаев:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Приравняем правые части формул:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Выразим и вычислим силу упругости, возникающую, когда удлинение пружины составит 6 см:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Если пружину растягивают две противоположные силы, то модули силы упругости и модули этих сил равны между собой:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Если груз подвешен к пружине, сила упругости будет равна силе тяжести, действующей на это тело:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Если пружины соединены параллельно, их суммарный коэффициент жесткости будет равен сумме коэффициентов жесткости каждой из этих пружин:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Если пружины соединены последовательно, их обратное значение суммарного коэффициента жесткости будет равен сумме обратных коэффициентов жесткости для каждой из пружин:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Пример №2. Две пружины соединены параллельно. Жесткость одной из пружин равна 1000 Нм, второй — 4000 Нм. Когда к пружинам подвесили груз, они удлинились на 5 см. Найти силу тяжести груза.

Переведем сантиметры в метры: 5 см = 5∙10 –2 м.

Запишем закон Гука с учетом параллельного соединения пружин:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Модуль силы тяжести согласно третьему закону Ньютона равен модулю силы упругости. Отсюда:

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение телаНа рисунке представлен график зависимости модуля силы упругости от удлинения пружины. Какова жёсткость пружины?

Источник

Сила упругости

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

Сила — это физическая векторная величина, которую воздействует на данное тело со стороны других тел.

Она измеряется в Ньютонах — это единица измерения названа в честь Исаака Ньютона.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Деформация

Деформация — это изменение формы и размеров тела (или части тела) под действием внешних сил

Происходит деформация из-за различных факторов: при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела.

Деформация является деформацией, пока сила, вызывающая эту деформацию, не приведет к разрушению.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу напряжений. Одни процессы деформации связаны с преимущественно перпендикулярно (нормально) приложенной силой, а другие — преимущественно с силой, приложенной по касательной.

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

Сила упругости: Закон Гука

Деформацию тоже можно назвать упругой (при которой тело стремится вернуть свою форму и размер в изначальное состояние) и неупругой (когда тело не стремится вернуться в исходное состояние).

При деформации возникает сила упругости— это та сила, которая стремится вернуть тело в исходное состояние, в котором оно было до деформации.

Сила упругости, возникающая при упругой деформации растяжения или сжатия тела, про­порциональна абсолютному значению изменения длины тела. Выражение, описывающее эту закономерность, называется законом Гука.

Какой буквой обозначается сила упругости?

Закон Гука

Fупр = kx

Fупр — сила упругости [Н]
k — коэффициент жесткости [Н/м]
х — изменение длины (деформация) [м]

Изменение длины может обозначаться по-разному в различных источниках. Варианты обозначений: x, ∆x, ∆l.

Это равноценные обозначения — можно использовать любое удобное.

Поскольку сила упругости направлена против направления силы, с которой это тело деформируется (она же стремится все «распрямить»), в Законе Гука должен быть знак минус. Часто его и можно встретить в разных учебниках. Но поскольку мы учитываем направление этой силы при решении задач, знак минус можно не ставить.

Задачка

На сколько удлинится рыболовная леска жесткостью 0,3 кН/м при поднятии вверх рыбы весом 300 г?

Решение:

Сначала определим силу, которая возникает, когда мы что-то поднимаем. Это, конечно, сила тяжести. Не забываем массу представить в единицах СИ – килограммах.

Если принять ускорение свободного падения равным 10 м/с*с, то модуль силы тяжести равен :

Тогда из Закона Гука выразим модуль удлинения лески:

Выражаем модуль удлинения:

Подставим числа, жесткость лески при этом выражаем в Ньютонах:

x=3/(0,3 * 1000)=0,01 м = 1 см

Ответ: удлинение лески равно 1 см.

Параллельное и последовательное соединение пружин

В Законе Гука есть такая величина, как коэффициент жесткости— это характеристика тела, которая показывает его способность сопротивляться деформации. Чем больше коэффициент жесткости, тем больше эта способность, а как следствие из Закона Гука — и сила упругости.

Чаще всего эта характеристика используется для описания жесткости пружины. Но если мы соединим несколько пружин, то их суммарная жесткость нужно будет рассчитать. Разберемся, каким же образом.

Последовательное соединение системы пружин

Последовательное соединение характерно наличием одной точки соединения пружин.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

Коэффициент жесткости при последовательном соединении пружин

1/k = 1/k₁ + 1/k₂ + … + 1/k_i

k — общая жесткость системы [Н/м] k1, k2, …, — отдельные жесткости каждого элемента [Н/м] i — общее количество всех пружин, задействованных в системе [-]

Параллельное соединение системы пружин

Последовательное соединение характерно наличием двух точек соединения пружин.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

В случае когда пружины соединены параллельно величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

Коэффициент жесткости при параллельном соединении пружин

k — общая жесткость системы [Н/м] k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м] i — общее количество всех пружин, задействованных в системе [-]

Задачка

Какова жесткость системы из двух пружин, жесткости которых k₁ = 100 Н/м, k₂ = 200 Н/м, соединенных: а) параллельно; б) последовательно?

Решение:

а) Рассмотрим параллельное соединение пружин.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

При параллельном соединении пружин общая жесткость

k = k₁ + k₂ = 100 + 200 = 300 Н/м

б) Рассмотрим последовательное соединение пружин.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

При последовательном соединении общая жесткость двух пружин

1/k = 1/100 + 1/200 = 0,01 + 0,005 = 0,015

k = 1000/15 = 200/3 ≃ 66,7 Н/м

График зависимости силы упругости от жесткости

Закон Гука можно представить в виде графика. Это график зависимости силы упругости от изменения длины и по нему очень удобно можно рассчитать коэффициент жесткости. Давай рассмотрим на примере задач.

Задачка 1

Определите по графику коэффициент жесткости тела.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Решение:

Из Закона Гука выразим коэффициент жесткости тела:

Снимем значения с графика. Важно выбрать одну точку на графике и записать для нее значения обеих величин.

Например, возьмем вот эту точку.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

В ней удлинение равно 2 см, а сила упругости 2 Н.

Переведем сантиметры в метры: 2 см = 0,02 м И подставим в формулу: k = F/x = 2/0,02 = 100 Н/м

Ответ:жесткость пружины равна 100 Н/м

Задачка 2

На рисунке представлены графики зависимости удлинения от модуля приложенной силы для стальной (1) и медной (2) проволок равной длины и диаметра. Сравнить жесткости проволок.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Решение:

Возьмем точки на графиках, у которых будет одинаковая сила, но разное удлинение.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Мы видим, что при одинаковой силе удлинение 2 проволоки (медной) больше, чем 1 (стальной). Если выразить из Закона Гука жесткость, то можно увидеть, что она обратно пропорциональна удлинению.

Значит жесткость стальной проволоки больше.

Ответ: жесткость стальной проволоки больше медной.

Источник

Сила упругости

Сила упругости широко используется в технике. Эта сила возникает в упругих телах при их деформации. Деформация – это изменение формы тела, под действием приложенных сил.

Виды деформации

Деформация – это изменение формы, или размеров тела.

Есть несколько видов деформации:

Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.

Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.

Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б – эта же линейка, деформируемая кручением.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.

Растяжение пружины

Рассмотрим подробнее деформацию растяжения на примере пружины.

Давайте прикрепим пружину к некоторой поверхности (рис. 2). На рисунке слева указана начальная длина \(L_<0>\) пружины.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Подвесим теперь к пружине груз. Пружина будет иметь длину \(L\), указанную на рисунке справа.

Сравним длину нагруженной пружины с длиной свободно висящей пружины.

\[ \large L_ <0>+ \Delta L = L \]

Найдем разницу (разность) между длинами свободно висящей пружины и пружины с грузом. Вычтем для этого из обеих частей этого уравнения величину \(L_<0>\).

\( L_ <0>\left(\text <м>\right) \) – начальная длина пружины;

\( L \left(\text <м>\right) \) – конечная длина растянутой пружины;

\( \Delta L \left(\text <м>\right) \) – кусочек длины, на который растянули пружину;

Величину \( \Delta L \) называют удлинением пружины.

Иногда рассчитывают относительное удлинение. Это относительное удлинение часто выражают десятичной дробью. Или дробью, в знаменателе которой находится число 100 — такую дробь называют процентом.

Примечание: Отношение – это дробь. Относительное – значит, дробное.

\( \varepsilon \) – это отношение (доля) растяжения пружины к ее начальной длине. Измеряют в процентах и называют относительным удлинением.

Расчет силы упругости

Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.

Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.

Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Закон Гука

Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал \( F_<\text<упр>> \) силой упругости.

\[ \large \boxed< F_<\text<упр>> = k \cdot \Delta L >\]

Эту формулу назвали законом упругости Гука.

\( F_<\text<упр>> \left( H \right) \) – сила упругости;

\( \Delta L \left(\text <м>\right) \) – удлинение пружины;

\( \displaystyle k \left(\frac<\text<м>> \right) \) – коэффициент жесткости (упругости).

Какие деформации называют малыми

Закон Гука применяют для малых удлинений (деформаций).

Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.

Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.

Как рассчитать коэффициент жесткости

Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Так как силы взаимно компенсируются, в правой части уравнения находится ноль.

\[ \large F_<\text<упр>> — m \cdot g = 0 \]

Подставим в это уравнение выражение для силы упругости

\[ \large k \cdot \Delta L — m \cdot g = 0 \]

Прибавим к обеим частям вес груза и разделим на измеренное изменение длины \(\Delta L \) пружины. Получим выражение для коэффициента жесткости:

Соединяем две одинаковые пружины

В задачниках по физике и пособиях для подготовки к ЕГЭ встречаются задачи, в которых одинаковые пружины соединяют последовательно, либо параллельно.

Параллельное соединение пружин

На рисунке 5а представлена свободно висящая пружина. Нагрузим ее (рис. 5б), она растянется на величину \(\Delta L\). Соединим две такие пружины параллельно и подвесим груз в середине перекладины (рис. 5в). Из рисунка видно, что конструкция из двух параллельных пружин под действием груза растянется меньше, нежели единственная такая пружина.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Сравним растяжение двух одинаковых пружин, соединенных параллельно, с растяжением одной пружины. К пружинам подвешиваем один груз весом \(mg\).

\[ \large k_ <1>\cdot \Delta L = m \cdot g \]

Две параллельные пружины:

\[ \large k_<\text<параллел>> \cdot \Delta L \cdot \frac<1><2>= m \cdot g \]

Так как правые части уравнений совпадают, левые части тоже будут равны:

\[ \large k_<\text<параллел>> \cdot \Delta L \cdot \frac<1><2>= k_ <1>\cdot \Delta L \]

Обе части уравнения содержат величину \(\Delta L \). Разделим обе части уравнения на нее:

Умножим обе части полученного уравнения на число 2:

Коэффициент жесткости \(k_<\text<параллел>>\) двух пружин, соединенных параллельно, увеличился вдвое, в сравнении с одной такой пружиной

Последовательное соединение пружин

Рисунок 6а иллюстрирует свободно висящую пружину. Нагруженная пружина (рис. 6б), растянута на длину \(\Delta L\). Теперь возьмем две такие пружины и соединим их последовательно. Подвесим груз к этим (рис. 6в) пружинам.

Практика показывает, что конструкция из двух последовательно соединенных пружин под действием груза растянется больше единственной пружины.

На каждую пружину в цепочке действует вес груза. Под действием веса пружина растягивается и передает далее по цепочке этот вес без изменений. Он растягивает следующую пружину. А та, в свою очередь, растягивается на такую же величину \(\Delta L\).

Примечание: Под действием силы пружина растягивается и передает эту растягивающую силу далее по цепочке без изменений

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Сравним растяжение двух одинаковых последовательно соединенных пружин и растяжение единственной пружины. В обоих случаях к пружинам подвешиваем одинаковый груз весом \(mg\).

\[ \large k_ <1>\cdot \Delta L = m \cdot g \]

Две последовательные пружины:

\[ \large k_<\text<послед>> \cdot \Delta L \cdot 2 = m \cdot g \]

Так как правые части уравнений совпадают, левые части тоже будут равны:

\[ \large k_<\text<послед>> \cdot \Delta L \cdot 2 = k_ <1>\cdot \Delta L \]

Обе части уравнения содержат величину \(\Delta L \). Разделим обе части уравнения на нее:

Разделим обе части полученного уравнения на число 2:

Коэффициент жесткости \(k_<\text<послед>>\) двух пружин, соединенных последовательно, уменьшится вдвое, в сравнении с одной такой пружиной

Потенциальная энергия сжатой или растянутой пружины

Пружина сжатая (левая часть рис. 7), или растянутая (правая часть рис. 7) на длину \(\Delta L \) обладает потенциальной возможностью вернуться в первоначальное состояние и при этом совершить работу, например, по перемещению груза. В таких случаях физики говорят, что пружина обладает потенциальной энергией.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Эта энергия зависит от коэффициента жесткости пружины и от ее удлинения (или укорочения при сжатии).

Чем больше жесткость (упругость) пружины, тем больше ее потенциальная энергия. Увеличив удлинение пружины получим повышение ее потенциальной энергии по квадратичному закону:

\[ \large \boxed < E_

= \frac <2>\cdot \left( \Delta L \right)^ <2>>\]

\( E_

\left( \text <Дж>\right)\) – потенциальная энергия сжатой или растянутой пружины;

\( \Delta L \left(\text <м>\right) \) – удлинение пружины;

\( \displaystyle k \left(\frac<\text<м>> \right) \) – коэффициент жесткости (упругости) пружины.

Источник

Учебники

Журнал «Квант»

Общие

Содержание

Деформация

Деформация (от лат. Deformatio – искажение) – изменение формы и размеров тела под действием внешних сил.

Деформации возникают потому, что различные части тела движутся по-разному. Если бы все части тела двигались одинаково, то тело всегда сохраняло бы свою первоначальную форму и размеры, т.е. оставалось бы недеформированным. Рассмотрим несколько примеров.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Виды деформации

Деформации растяжения и сжатия. Если к однородному, закрепленному с одного конца стержню приложить силу F вдоль его оси в направлении от стержня, то он подвергнется деформации растяжения. Деформацию растяжения испытывают тросы, канаты, цепи в подъемных устройствах, стяжки между вагонами и т.д. Если на закрепленный стержень подействовать силой вдоль его оси по направлению к стержню, то он подвергнется сжатию. Деформацию сжатия испытывают столбы, колонны, стены, фундаменты зданий и т.п. При растяжении или сжатии изменяется площадь поперечного сечения тела.

Деформация сдвига. Деформацию сдвига можно наглядно продемонстрировать на модели твердого тела, представляющего собой ряд параллельных пластин, соединенных между собой пружинами (рис. 3). Горизонтальная сила F сдвигает пластины друг относительно друга без изменения объема тела. У реальных твердых тел при деформации сдвига объем также не изменяется. Деформации сдвига подвержены заклепки и болты, скрепляющие части мостовых ферм, балки в местах опор и др. Сдвиг на большие углы может привести к разрушению тела – срезу. Срез происходит при работе ножниц, долота, зубила, зубьев пилы и т.д.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Деформация изгиба. Легко согнуть стальную или деревянную линейку руками или с помощью какой-либо другой силы. Балки и стержни, расположенные горизонтально, под действием силы тяжести или нагрузок прогибаются – подвергаются деформации изгиба. Деформацию изгиба можно свести к деформации неравномерного растяжения и сжатия. Действительно, на выпуклой стороне (рис. 4) материал подвергается растяжению, а на вогнутой – сжатию. Причем чем ближе рассматриваемый слой к среднему слою KN, тем растяжение и сжатие становятся меньше. Слой KN, не испытывающий растяжения или сжатия, называется нейтральным. Так как слои АВ и CD подвержены наибольшей информации растяжения и сжатия, то в них возникают наибольшие силы упругости (на рисунке 4 силы упругости показаны стрелками). От внешнего слоя к нейтральному эти силы уменьшаются. Внутренний слой не испытывает заметных деформаций и не противодействует внешним силам, а поэтому является лишним в конструкции. Его обычно удаляют, заменяя стержни трубами, а бруски – тавровыми балками (рис. 5). Сама природа в процессе эволюции наделила человека и животных трубчатыми костями конечностей и сделала стебли злаков трубчатыми, сочетая экономию материала с прочностью и меткостью «конструкций».

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Деформация кручения. Если на стержень, один из концов которого закреплен (рис. 6), подействовать парой сил, лежащей в плоскости поперечного сечения стержня, то он закручивается. Возникает, как говорят, деформация кручения.

Каждое поперечное сечение поворачивается относительно другого вокруг оси стержня на некоторый угол. Расстояние между сечениями не меняется. Таким образом, опыт показывает, что при кручении стержень можно представить как систему жестких кружков, насаженных центрами на общую ось. Кружки эти (точнее, сечения) поворачиваются на различные углы в зависимости от их расстояния до закрепленного конца. Слои поворачиваются, но на различные углы. Однако при этом соседние слои поворачиваются друг относительно друга одинаково вдоль всего стержня. Деформацию кручения можно рассматривать как неоднородный сдвиг. Неоднородность сдвига выражается в том, что деформация сдвига изменяется вдоль радиуса стержня. На оси деформация отсутствует, а на периферии она максимальна. На самом удаленном от закрепленного конца торце стержня угол поворота наибольший. Его называют углом кручения. Кручение испытывают валы всех машин, винты, отвертки и т.п.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Основными деформациями являются деформации растяжения (сжатия) и сдвига. При деформации изгиба происходит неоднородное растяжение и сжатие, а при деформации кручения – неоднородный сдвиг.

Вид деформацииПризнаки
Растяженияувеличивается расстояние между молекулярными слоями.
Сжатияуменьшается расстояние между молекулярными слоями.
Крученияповорот одних молекулярных слоев относительно других.
Изгибаодни молекулярные слои растягиваются, а другие сжимаются или растягиваются, но меньше первых.
Сдвигаодни слои молекул сдвигаются относительно других.
Упругаяпосле прекращения воздействия тело полностью вос-станавливает первоначальную форму и размеры.
Пластичнаяпосле прекращения воздействия тело не восстанавливает первоначальную форму или размеры.

Силы упругости.

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости.

Силы упругости препятствуют изменению размеров и формы тела. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. Например, со стороны упруго деформированной доски D на брусок С, лежащий на ней, действует сила упругости Fупр (рис. 7).

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Важная особенность силы упругости состоит в том, что она направлена перпендикулярно поверхности соприкосновения тел, а если идет речь о таких телах, как деформированные пружины, сжатые или растянутые стержни, шнуры, нити, то сила упругости направлена вдоль их осей. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела.

Силу, действующую на тело со стороны опоры или подвеса, называют силой реакции опоры или силой натяжения подвеса. На рисунке 8 приведены примеры приложения к телам сил реакции опоры (силы N1, N2, N3, N4 и N5) и сил натяжения подвесов (силы T1, T2, T3 и T4).

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Абсолютное и относительное удлинения

Линейная деформация (деформация растяжения) – деформация, при которой происходит изменение только одного линейного размера тела.

Количественно она характеризуется абсолютным Δl и относительным ε удлинением.

где Δl – абсолютное удлинение (м); l и l0 – конечная и начальная длина тела (м).

где ε – относительное удлинение тела (%); Δl – абсолютное удлинение тела (м); l0 –начальная длина тела (м).

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

где Fупр – модуль силы упругости, возникающей в теле при деформации (Н); Δl – абсолютное удлинение тела (м).

Коэффициент k называется жесткостью тела – коэффициент пропорциональности между деформирующей силой и деформацией в законе Гука.

Жесткость пружины численно равна силе, которую надо приложить к упруго деформируемому образцу, чтобы вызвать его единичную деформацию.

В системе СИ жесткость измеряется в ньютонах на метр (Н/м):

Коэффициент жесткости зависит от формы и размеров тела, а также от материала.

Закон Гука для одностороннего растяжения (сжатия) формулируют так:

сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Механическое напряжение.

Состояние упруго деформированного тела характеризуют величиной σ, называемой механическим напряжением.

Механическое напряжение σ равно отношению модуля силы упругости Fупр к площади поперечного сечения тела S:

Измеряется механическое напряжение в Па: [σ] = Н/м 2 = Па.

Наблюдения показывают, что при небольших деформациях механическое напряжение σ пропорционально относительному удлинению ε:

Эта формула является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным.

Коэффициент пропорциональности Е в законе Гука называется модулем упругости (модулем Юнга). Экспериментально установлено, что

модуль Юнга численно равен такому механическому напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза.

Докажем это: Из закона Гука получаем, что \(

Измеряется модуль Юнга в Па: [E] = Па/1 = Па.

Практически любое тело (кроме резины) при упругой деформации не может удвоить свою длину: значительно раньше оно разорвется. Чем больше модуль упругости Е, тем меньше деформируется стержень при прочих равных условиях (l0, S, F). Таким образом, модуль Юнга характеризует сопротивляемость материала упругой деформации растяжения или сжатия.

Закон Гука, записанный в форме (2), легко привести к виду (1). Действительно, подставив в (2) \(

Диаграмма растяжения

Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств (например, с помощью гидравлического пресса) подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения σ от относительного удлинения ε. Этот график называют диаграммой растяжения (рис. 10).

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Многочисленные опыты показывают, что при малых деформациях напряжение σ прямо пропорционально относительному удлинению ε (участок ОА диаграммы) – выполняется закон Гука.

Эксперимент показывает, что малые деформации полностью исчезают после снятия нагрузки (наблюдается упругая деформация). При малых деформациях выполняется закон Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности σп. Он соответствует точки А диаграммы.

Если продолжать увеличивать нагрузку при растяжении и превзойти предел пропорциональности, то деформация становится нелинейной (линия ABCDEK). Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σуп. Он соответствует точке В диаграммы. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.

Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).

За пределом упругости при некотором значении напряжения, соответствующем точке С диаграммы, удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала.

При дальнейшем увеличении нагрузки напряжение повышается (от точки D), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е) для дальнейшего удлинения нужно меньшее напряжение, но, в конце концов, наступает разрушение образца (точка К). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности. Обозначим его σпч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.

Чтобы свести к минимуму возможность разрушения сооружения, инженер должен при расчетах допускать в его элементах такие напряжения, которые будут составлять лишь часть предела прочности материала. Их называют допустимыми напряжениями. Число, показывающее, во сколько раз предел прочности больше допустимого напряжения, называют коэффициентом запаса прочности. Обозначив запас прочности через n, получим:

Запас прочности выбирается в зависимости от многих причин: качества материала, характера нагрузки (статическая или изменяющаяся со временем), степени опасности, возникающей при разрушении, и т.д. На практике запас прочности колеблется от 1,7 до 10. Выбрав правильно запас прочности, инженер может определить допустимое в конструкции напряжение.

Пластичность и хрупкость

Тело из любого материала при малых деформациях ведет себя как упругое. В то же время почти все тела в той или иной мере могут испытывать пластические деформации. Существуют хрупкие тела.

Механические свойства материалов разнообразны. Такие материалы, как резина или сталь, обнаруживают упругие свойства до сравнительно больших напряжений и деформаций. Для стали, например, закон Гука выполняется вплоть до ε = 1%, а для резины – до значительно больших ε, порядка десятков процентов. Поэтому такие материалы называют упругими.

У мокрой глины, пластилина или свинца область упругих деформаций мала. Материалы, у которых незначительные нагрузки вызывают пластические деформации, называют пластичными.

Деление материалов на упругие и пластичные в значительной мере условно. В зависимости от возникающих напряжений один и тот же материал будет вести себя или как упругий, или как пластичный. Так, при очень больших напряжениях сталь обнаруживает пластичные свойства. Это широко используют при штамповке стальных изделий с помощью прессов, создающих огромную нагрузку.

Холодная сталь или железо с трудом поддаются ковке молотом. Но после сильного нагрева им легко придать посредством ковки любую форму. Пластичный при комнатной температуре свинец приобретает ярко выраженные упругие свойства, если его охладить до температуры ниже –100 °С.

Большое значение на практике имеет свойство твердых тел, называемое хрупкостью. Тело называют хрупким, если оно разрушается при небольших деформациях. Изделия из стекла и фарфора хрупкие: они разбиваются на куски при падении на пол даже с небольшой высоты. Чугун, мрамор, янтарь также обладают повышенной хрупкостью. Наоборот, сталь, медь, свинец не являются хрупкими.

Отличительные особенности хрупких тел легче всего уяснить с помощью зависимости σ от ε при растяжении. На рисунке 11, а, б изображены диаграммы растяжений чугуна и стали. На них видно, что при растяжении чугуна всего лишь на 0,1% в нем возникает напряжение около 80 МПа, тогда как в стали оно при такой же деформации равно лишь 20 МПа.

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

в чем измеряется удлинение тела. Смотреть фото в чем измеряется удлинение тела. Смотреть картинку в чем измеряется удлинение тела. Картинка про в чем измеряется удлинение тела. Фото в чем измеряется удлинение тела

Чугун разрушается сразу при удлинении на 0,45%, почти не испытывая предварительно пластических деформаций. Предел прочности его равен 1,2∙108 Па. У стали же при ε = 0,45% деформация все еще остается упругой и разрушение происходит при ε ≈ 15%. Предел прочности стали равен 700 МПа.

У всех хрупких материалов напряжение очень быстро растет с удлинением, и они разрушаются при весьма малых деформациях. Пластичные свойства у хрупких материй лов практически не проявляются.

Литература

Составители

Ванкович Е. (11 «А» МГОЛ № 1), Шкрабов А. (11 «В» МГОЛ № 1).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *