в чем измеряется термодинамическая температура

Абсолютная термодинамическая температура

в чем измеряется термодинамическая температура. Смотреть фото в чем измеряется термодинамическая температура. Смотреть картинку в чем измеряется термодинамическая температура. Картинка про в чем измеряется термодинамическая температура. Фото в чем измеряется термодинамическая температура

Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние) — физическая величина, примерно характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

В системе СИ температура измеряется в кельвинах. Но на практике часто применяют градусы Цельсия из-за привязки к важным характеристикам воды — температуре таяния льда (0° C) и температуре кипения (100° C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном.

Существуют также шкалы Фаренгейта и некоторые другие.

Содержание

Молекулярно-кинетическое определение

Температура с молекулярно-кинетической точки зрения — физическая величина, характеризующая интенсивность хаотического, теплового движения всей совокупности частиц системы и пропорциональная средней кинетической энергии поступательного движения одной частицы.

Связь между кинетической энергией, массой и скоростью выражается следующей формулой:
Ek = 1 /2mv 2
Таким образом частицы одинаковой массы и имеющие одинаковую скорость имеют и одинаковую температуру.
Средняя кинетическая энергия частицы связана с термодинамической температурой постоянной Больцмана:
Eср = i/2kBT
где:

i — число степеней свободы kB = 1.380 6505(24) × 10 −23 Дж/K — постоянная Больцмана T — температура;

Термодинамическое определение

Температура — величина, обратная изменению энтропии (степени беспорядка) системы при добавлении в систему единичного количества теплоты: 1/T = ΔSQ.

История термодинамического подхода

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы. Если в системе два тела имеют одинаковую температуру, то между ними не происходит передачи кинетической энергии частиц (тепла). Если же существует разница температур, то тепло переходит от тела с более высокой температурой к телу с более низкой, потому что суммарная энтропия при этом возрастает.

Температура связана также с субъективными ощущениями «тепла» и «холода», связанными с тем, отдает ли живая ткань тепло или получает его.

Некоторые квантовомеханические системы могут находится в состоянии, при котором энтропия не возрастает, а убывает при добавлении энергии, что формально соответствует отрицательной абсолютной температуре. Однако такие состояния находятся не «ниже абсолютного нуля», а «выше бесконечности», поскольку при контакте такой системы с телом, обладающим положительной температурой, энергия передается от системы к телу, а не наоборот (подробнее см. Квантовая термодинамика).

Свойства температуры изучает раздел физики — термодинамика. Температура также играет важную роль во многих областях науки, включая другие разделы физики, а также химию и биологию.

Измерение температуры

Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры.

На практике для измерения температуры используют

Единицы и шкала измерения температуры

Из того, что температура — это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Шкала температур Кельвина

Понятие абсолютной температуры было введено У. Томсоном (Кельвином), в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры — кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры — абсолютный ноль, то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что приблизительно равно −273.15 °C.

Шкала температур Кельвина — температурная шкала, в которой начало отсчёта ведётся от абсолютного нуля.

Используемые в быту температурные шкалы — как Цельсия, так и Фаренгейта (используемая, в основном, в США), — не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина, а другая — абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что кельвин равен градусу Цельсия, а градус Ранкина — градусу Фаренгейта.

Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K. Число градусов Цельсия и кельвинов между точками замерзания и кипения воды одинаково и равно 100. Поэтому градусы Цельсия переводятся в кельвины по формуле K = °C + 273,15.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при нормальном атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15° C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для метеорологии, поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

Энергия теплового движения при абсолютном нуле

Когда материя охлаждается, многие формы тепловой энергии и связанные с ней эффекты одновременно уменьшаются по величине. Вещество переходит от менее упорядоченного состояния к более упорядоченному. Газ превращается в жидкость и затем кристаллизуется в твёрдое тело (гелий и при абсолютном нуле остается в жидком состоянии при атмосферном давлении). Движение атомов и молекул замедляется, их кинетическая энергия уменьшается. Сопротивление большинства металлов падает из-за уменьшения рассеяния электронов на колеблющихся с меньшей амплитудой атомах кристаллической решётки. Таким образом даже при абсолютном нуле электроны проводимости движутся между атомами со скоростью Ферми порядка 1×10 6 м/с.

Температура, при которой частицы вещества имеют минимальное количество движения, сохраняющееся только благодаря квантовомеханическому движению, — это температура абсолютного нуля (Т = 0К).

Температура с термодинамической точки зрения

Существует множество различных шкал температур. Когда-то температура определялась очень произвольно. Мерой температуры служили метки, нанесённые на равных расстояниях на стенах трубочки, в которой при нагревании расширялась вода. Потом решили измерить температуру ртутным термометром и обнаружили, что градусные расстояния не одинаковы. В термодинамике дается определение температуры, не зависящее от каких-либо частных свойств вещества.

Поскольку найденная функция возрастает с температурой, то можно считать, что она сама по себе измеряет температуру, начиная со стандартной температуры в один градус. Это означает, что можно найти температуру тела, определив количество тепла, которое поглощается тепловой машиной, работающей в интервале между температурой тела и температурой в один градус. Полученная таким образом температура называется абсолютной термодинамической температурой и не зависит от свойств вещества. Таким образом, для обратимой тепловой машины выполняется равенство:

в чем измеряется термодинамическая температура. Смотреть фото в чем измеряется термодинамическая температура. Смотреть картинку в чем измеряется термодинамическая температура. Картинка про в чем измеряется термодинамическая температура. Фото в чем измеряется термодинамическая температура

в чем измеряется термодинамическая температура. Смотреть фото в чем измеряется термодинамическая температура. Смотреть картинку в чем измеряется термодинамическая температура. Картинка про в чем измеряется термодинамическая температура. Фото в чем измеряется термодинамическая температура

в чем измеряется термодинамическая температура. Смотреть фото в чем измеряется термодинамическая температура. Смотреть картинку в чем измеряется термодинамическая температура. Картинка про в чем измеряется термодинамическая температура. Фото в чем измеряется термодинамическая температура

Температура и излучение

При повышении температуры растёт энергия, излучаемая нагретым телом. Энергия излучения абсолютно чёрного тела описывается законом Стефана — Больцмана

Шкала Реомюра

Предложена в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Переходы из разных шкал

Пересчёт температуры между основными шкалами

в\изКельвинЦельсийФаренгейт
Кельвин (K)= K= С + 273,15= (F + 459,67) / 1,8
Цельсий (° C)= K − 273,15= C= (F − 32) / 1,8
Фаренгейт (°F)= K · 1,8 − 459,67= C · 1,8 + 32= F

Сравнение температурных шкал

Сравнение температурных шкал

ОписаниеКельвинЦельсийФаренгейтРанкинДелильНьютонРеомюрРёмер
Абсолютный ноль0−273.15−459.670559.725−90.14−218.52−135.90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах)255.37−17.780459.67176.67−5.87−14.22−1.83
Температура замерзания воды (Нормальные условия)273.15032491.67150007.5
Средняя температура человеческого тела ¹310.036.698.2557.994.512.2129.626.925
Температура кипения воды (Нормальные условия)373.15100212671.670338060
Плавление титана1941166830343494−23525501334883
Поверхность Солнца58005526998010440−8140182344212909

Некоторые значения в этой таблице были округлены.

Характеристика фазовых переходов

Для описания точек фазовых переходов различных веществ используют следующие значения температуры:

Источник

Температура в термодинамике

Вы будете перенаправлены на Автор24

Рисунок 1. Понятие термодинамики. Автор24 — интернет-биржа студенческих работ

Термодинамическая температура в физике всегда обозначается буквой T, измеряется в кельвинах (обозначается K) и отсчитывается исключительно по абсолютной термодинамической шкале под названием шкал Кельвина. Абсолютная температура в термодинамике является основной шкалой в физике и в термодинамических уравнениях.

Молекулярно-кинетическая гипотеза, со своей стороны, непосредственно соединяет абсолютную температуру со средним коэффициентом кинетической энергией прямолинейного движения молекул идеального газа в условиях постоянного равновесия.

История измерения температуры

Измерение температуры в термодинамики прошло достаточно долгий и трудный путь в своём развитии. Так как температура невозможно измерить непосредственно, то для её измерения ученые применяли свойства термометрических веществ, находившиеся в функциональной зависимости от коэффициента температуры. На этой основе в итоге были созданы различные температурные шкалы, получившие название эмпирических, а измеренная посредством их температура носит название эмпирической.

Весомыми недостатками эмпирических шкал считается наличие несовпадения и непостоянства значений температур для различных термометрических тел: как между реперными материальными точками, так и за их границами.

Готовые работы на аналогичную тему

Такое явление связано с отсутствием в природе универсального вещества, способного сохранять свои свойства в диапазоне всевозможных температур. В 1848 году Томсон решил с помощью экспериментов выбрать наиболее подходящий градус температурной среды таким образом, чтобы в её пределах эффективность тепловой машины была при любых условиях одинаковой.

В дальнейшем, в марте 1854 года, исследователи использовали обратную функцию Карно для создания новой шкалы в термодинамике, не зависящей от свойств, активно действующих в системе термометрических тел. Однако, практическое внедрение этой идеи оказалась невозможной. В начале XIX столетия в поисках «абсолютного» устройства для измерения температуры наука вновь вернулась к теории идеального газового термометра, базирующейся на законах веществ Гей-Люссака и Шарля.

Газовый термометр в течение длительного периода времени был единственным методом воспроизведения и закрепления абсолютной температуры. Новые направления в разработке идеальной температурной шкалы основаны на реализации уравнений Стефана ─ Больцмана в бесконтактной термометрии и формулы Гарри (Харри) Найквиста ─ в контактной.

Температура как интенсивное свойство

в чем измеряется термодинамическая температура. Смотреть фото в чем измеряется термодинамическая температура. Смотреть картинку в чем измеряется термодинамическая температура. Картинка про в чем измеряется термодинамическая температура. Фото в чем измеряется термодинамическая температура

Рисунок 2. Термодинамическая температура. Автор24 — интернет-биржа студенческих работ

Чтобы определить температуру, как интенсивное свойство любой системы, необходимо наполнить бочку холодной водой из других ведер. Сумма объемов жидкости в ведрах равна объему бочки. Однако сколько бы холодной воды ни поместить в бочку, горячей воды при этом невозможно получить. Такое рассуждение не смешно и не наивно, как может показаться с первого раза, ведь опыт не очевиден сам собой. Это один из важнейших законов природы, к которому люди просто привыкли.

Например, из нескольких коротких палок возможно быстро составить одну длинную, если соединить их встык между собой. Объем и длина – основные свойства системы. Но теперь желательно добавить к ним площадь и массу, которые выступают в качестве примеров экстенсивных свойств. Такие величины постепенно складываются, а на основе закона сложения базируется и метод их дальнейшего измерения.

Измерять температуру необходимо так, как измеряют площадь, длину, объем, массу, нельзя: температуры никогда не складываются. Единица температуры, которой можно сразу измерять любую температурную шкалу, просто невозможна. Температура – яркий пример интенсивных свойств концепции, поэтому к ней закон сложения неприменим.

Например, если разделить железный стержень на несколько частей, температура каждой из них останется прежней, а вот длина, соответственно, изменится.

Непосредственно установить конкретное числовое соотношение между различными температурами бессмысленно и нереально. Поэтому цель ученых измерить температуру без использования метода, пригодным для экстенсивных величин оказалась невыполнимой.

Основы построения термодинамической шкалы температур

Рисунок 3. Абсолютная температура в термодинамике. Автор24 — интернет-биржа студенческих работ

Шкала температур в термодинамике может быть построена принципиально на основании гипотезы Карно, которая предполагает:

Такое соотношение возможно использовать для построения абсолютной термодинамической температуры. Если изометрическое явление цикла Карно осуществлять при температуре тройной точки воды, то коэффициент объема движущихся веществ изменится. Установленная таким образом шкала называется в физике термодинамической шкалой Кельвина. К сожалению, точность и надежность измерения количества теплоты низкая, что не позволяет реализовать вышеуказанный метод на практике.

Абсолютная температурная шкала может быть представлена в качестве некого термометрического элемента идеального газа. Если измерять давление этого вещества, близкого по свойствам к идеальному, расположенного в герметичном сосуде постоянного объёма, то таким способом ученые определяют температурную шкалу, которая называется идеально-газовой. Преимуществом этой шкалы считается тот факт, что давление идеального газа изменяется линейно с температурой.

В различных тематических изданиях по термодинамике приводятся доказательства того, что измеренная по идеально-газовой шкале температура полностью совпадает с термодинамической температурой. Однако между этими сетками есть принципиальная разница с качественной точки зрения.

Только термодинамическая шкала является абсолютно самостоятельной и не зависит от свойств термометрического тела.

Как уже было ранее сказано, точное воспроизведение термодинамической шкалы всегда сопряжено с серьезными трудностями. Поэтому изначально необходимо тщательно измерять количество получаемой теплоты в изотермических процессах теплового двигателя.

Дальнейшее воспроизведение термодинамической температурной сетки в диапазоне от 10 до 1337 K возможно посредством газового термометра. При более высоких температурах возникает диффузия реального газа в стенках резервуара, а при температурах в несколько тысяч градусов элементы распадаются на атомы. Для измерения температурных показателей за пределами возможностей газовых термометров в силу вступают специальные методы измерения.

Источник

Температура

Температура

Температу́ра (от лат. temperatura — надлежащее смешение, нормальное состояние)

В термодинамике: физическая величина, характеризующая термодинамическую систему и количественно выражающая интуитивное понятие о различной степени передаваемой телами теплоты.

В молекулярно-кинетической теории показывается, что температура пропорциональна средней кинетической энергии частиц системы.

Живые существа способны воспринимать ощущения тепла и холода непосредственно, с помощью органов чувств. Однако точное определение температуры требует, чтобы температура измерялась объективно, с помощью приборов. Такие приборы называются термометрами и измеряют так называемую эмпирическую температуру. В эмпирической шкале температур устанавливаются две реперные точки и число делений между ними — так были введены используемые ныне шкалы Цельсия, Фаренгейта и другие.

В Международной системе величин (англ. International System of Quantities, ISQ) термодинамическая температура (измеряемая в Кельвинах) выбрана в качестве одной из семи основных физических величин системы. Измеряемая в кельвинах абсолютная температура вводится по одной реперной точке с учётом того, что в природе существует минимальное предельное значение температуры — абсолютный нуль. В Международной системе единиц (СИ), основанной на Международной системе величин, единица этой температуры — кельвин — является одной из семи основных единиц СИ. В системе СИ и на практике используется также температура Цельсия, её единицей является градус Цельсия (°С), по размеру равный кельвину.

Это удобно, так как большинство климатических процессов на Земле и процессов в живой природе связаны с диапазоном от −50 до +50 °С.

Соответствие температуры измеряемой в шкалах Цельсия и термодинамической шкалы (Кельвина) представлено на рисунке:

в чем измеряется термодинамическая температура. Смотреть фото в чем измеряется термодинамическая температура. Смотреть картинку в чем измеряется термодинамическая температура. Картинка про в чем измеряется термодинамическая температура. Фото в чем измеряется термодинамическая температура

Если система находится в тепловом равновесии, то температура всех её частей одинакова. В противном случае в системе происходит передача энергии от более нагретых частей системы к менее нагретым, приводящая к выравниванию температур в системе, и говорят о распределении температуры в системе или скалярном поле температур. В термодинамике температура — интенсивная термодинамическая величина.

Источник

Термодинамическая шкала температур.

Температура измеряется жидкостными или газовыми термометрами, соответствующим образом градуированными. Высокая температура измеряется оптическими термометрами (по спектру излучения) или электрическими (полупроводниковые термисторы, термопары).

В международной шкале температур за ноль принята температуру таяния льда при нормальном атмосферном давлении, 100 ° С — температуру пара кипящей воды при нормальном атмосферном давлении. 1/100 этого интервала — это 1 ° С (Цельсия). Обозначается t ° С.

В термодинамической шкале температур за ноль принята температура, при которой прекратилось бы тепловое движение частиц, из которых состоит тело.

Эта температура называется абсолютным нулем температур. Единица термодинамической шкалы температур в системе СИ — кельвин (К). Обозначается T (1 К = 1 ° С).

Формула связи термодинамической температуры (T) и температуры по международной шкале температур:

в чем измеряется термодинамическая температура. Смотреть фото в чем измеряется термодинамическая температура. Смотреть картинку в чем измеряется термодинамическая температура. Картинка про в чем измеряется термодинамическая температура. Фото в чем измеряется термодинамическая температура

В физике в большинстве случаев пользуются введенной английским ученым У. Кельвином абсолютной шкалой температур (1848 p.), Которая имеет две основные точки.

Первая основная точка — 0 К, или абсолютный ноль.

Вторая основная точка на абсолютной шкале температур — это точка, в которой вода существует во всех трех состояниях (твердом, жидком и газообразном), она названа тройной точкой.

Физический смысл абсолютного нуля: это температура, при которой прекращается тепловое движение молекул.

При абсолютном нуле молекулы поступательно не двигаются, но их колебательный и вращательный движения сохраняются. Тепловое движение молекул непрерывно и бесконечно. Соответственно абсолютный ноль температур при наличии молекул вещества недостижим. Он возможен только при условии отсутствия молекул, которых нет, например, в космосе при большом удалении от звезд и планет. Абсолютный ноль температур — это самая низкая температурная граница, верхней нет.

В быту для измерения температуры используют вторую температурную шкалу — шкалу Цельсия, названную в честь шведского астронома А. Цельсия и введенна им в 1742 году. На шкале Цельсия есть две основные точки: 0 ° С (точка, в которой тает лед) и 100 ° С (точка, в которой кипит вода). Температура, определяемая по шкале Цельсия, сказывается t. Шкала Цельсия имеет как положительные, так и отрицательные значения.

По рисунку можно проследить связь между температурами по шкалам Кельвина и Цельсия.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *