в чем измеряется солнечная энергия
Солнечная энергия. Цифры и факты
Основные характеристики солнечного света
Освещенность (усредненная мощность солнечного излучения, измеренная в верхней атмосфере Земли перпендикулярно солнечным лучам): 1366 Вт на квадратный метр (или 1361, в соответствии с НАСА).
Это значение обычно используется в характеристиках фотоэлектрических систем. Здесь и далее все цифры приведены для поверхностей, оптимально расположенных относительно солнца (перпендикулярно лучам) в соответствии с широтой. Для горизонтальных поверхностей вы получите меньше солнечного света: чем дальше от экватора, тем ниже плотность солнечной энергии.
Инсоляция (среднее количество часов «стандартного солнца» на протяжении суток): от 4–5 солнечных часов на северо-востоке США до 5–7 часов на юго-западе. Инсоляция часто указывается в кВт·ч, численно вытекая из значения «стандартного солнца» в 1 кВт.
Типовые характеристики фотоэлектрических систем
Средний КПД распространенных коммерческих солнечных панелей: на кристаллическом кремнии (CSI) – 12–17%; тонкопленочных (из аморфного кремния и других материалов) – 8–12%.
Мощность, генерируемая панелью в один квадратный метр: PVwatts = (солнечная мощность) × (средний КПД), где КПД преобразуется в десятичное число.
Пиковая мощность в безоблачный полдень: PVwatts-peak = 1000 Вт × КПД. Как правило, пиковая мощность равна 120170 Вт/м 2 для CSi и 80–120 Вт/м 2 для тонких пленок (TF).
Суммарное усредненное количество энергии, производимой панелью в один м 2 за день: PVday = PVwatts-peak × (Инсоляция в часах). Для инсоляции в 5 часов это значение будет 0.6–0.85 кВт/м 2 для CSi и 0.4–0.6 кВт/м 2 для TF.
Выработанная энергия панели, усредненная за весь день: PVwatts-average = PVday/24. Это примерно 25–35 Вт/м 2 для CSi и 17–25 Вт/м 2 для TF.
Общая энергия, генерируемая фотоэлектрическим модулем на м 2 в год: PVyear = (полная энергия в день) × 365, которая будет равна примерно 219–310 кВт·ч для CSi и 146–219 кВт·ч для TF. Обратите внимание, что инверторы имеют эффективность 95–97%, поэтому фактической электроэнергии будет на 5% меньше.
Краткая информация о Солнце
Перевод: Андрей Гаврилюк по заказу РадиоЛоцман
Оценка энергии солнечного излучения
Интенсивность солнечного света, которая достигает земли меняется в зависимости от времени суток, года, местоположения и погодных условий. Общее количество энергии, подсчитанное за день или за год, называется иррадиацией (или еще по-другому “приход солнечной радиации”) и показывает, насколько мощным было солнечное излучение. Иррадиация измеряется в Вт*ч/м² в день, или другой период.
Интенсивность солнечного излучения в свободном пространстве на удалении, равном среднему расстоянию между Землей и Солнцем, называется солнечной постоянной. Ее величина – 1353 Вт/м². При прохождении через атмосферу солнечный свет ослабляется в основном из-за поглощения инфракрасного излучения парами воды, ультрафиолетового излучения – озоном и рассеяния излучения частицами атмосферной пыли и аэрозолями. Показатель атмосферного влияния на интенсивность солнечного излучения, доходящего до земной поверхности, называется “воздушной массой” (АМ). АМ определяется как секанс угла между Солнцем и зенитом.
На рис.1 показано спектральное распределение интенсивности солнечного излучения в различных условиях. Верхняя кривая (АМ0) соответствует солнечному спектру за пределами земной атмосферы (например, на борту космического корабля), т.е. при нулевой воздушной массе. Она аппроксимируется распределением интенсивности излучения абсолютно черного тела при температуре 5800 К. Кривые АМ1 и АМ2 иллюстрируют спектральное распределение солнечного излучения на поверхности Земли, когда Солнце в зените и при угле между Солнцем и зенитом 60°, соответственно. При этом полная мощность излучения – соответственно порядка 925 и 691 Вт/м². Средняя интенсивность излучения на Земле примерно совпадает с интенсивностью излучения при АМ=1,5 (Солнце – под углом 45° к горизонту) [1].
Около поверхности Земли можно принять среднюю величину интенсивности солнечной радиации 635 Вт/м². В очень ясный солнечный день эта величина колеблется от 950 Вт/м² до 1220 Вт/м². Среднее значение — примерно 1000 Вт/м² [860 ккал/(м²ч)]. Пример: Интенсивность полного излучения в Цюрихе (47°30′ с. ш., 400 м над уровнем моря) на поверхности, перпендикулярной излучению:1 мая 12 ч 00 мин 1080 Вт/м²;21 декабря 12 ч 00 мин 930 Вт/м².
Для упрощения вычисления по приходу солнечной энергии, его обычно выражают в часах солнечного сияния с интенсивностью 1000 Вт/м². Т.е. 1 час соответствует приходу солнечной радиации в 1000 Вт*ч/м². Это примерно соответствует периоду, когда солнце светит летом в середине солнечного безоблачного дня на поверхность, перпендикулярную солнечным лучам.
Приход солнечной радиации меняется в течение дня и от места к месту, особенно в горных районах. Иррадиация меняется в среднем от 1000 кВт*ч/м² в год для северо-европейских стран, до 2000-2500 кВт*ч/м² в год для пустынь. Погодные условия и склонение солнца (которое зависит от широты местности), также приводит к различиям в приходе солнечной радиации.
В России, вопреки распространённому мнению, очень много мест, где выгодно преобразовывать солнечную энергию в электроэнергию при помощи солнечных батарей. Ниже приведена карта ресурсов солнечной энергии в России. Как видим, на большей части России можно успешно использовать солнечные батареи в сезонном режиме, а в районах с числом часов солнечного сияния более 2000 часов/год – круглый год. Естественно, в зимний период выработка энергии солнечными панелями существенно снижается, но все равно стоимость электроэнергии от солнечной электростанции остается существенно ниже, чем от дизельного или бензинового генератора.
Особенно выгодно применение солнечных батарей там, где нет централизованных электрических сетей и энергообеспечение обеспечивается за счет дизель-генераторов. А таких районов в России очень много.
Более того, даже там, где сети есть, использование работающих параллельно с сетью солнечных батарей позволяет значительно снизить расходы на электроэнергию. При существующей тенденции на повышении тарифов естественных энергетических монополий России, установки солнечных батарей становится умным вложением денег.
Ресурсы солнечной энергии России
Энергия солнца
Ныне солнечная энергетика широко применяется в случаях, когда малодоступность других источников энергии в совокупности с изобилием солнечного излучения оправдывает её экономически.
20 ноября 1980, Стив Птачек совершает полет на самолёте, питающемся только солнечной энергией.
Содержание
Земные условия
Поток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (вне атмосферы Земли), равен 1367 Вт/м² (солнечная постоянная). Из-за поглощения атмосферой Земли, максимальный поток солнечного излучения на уровне моря — 1020 Вт/м². Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную площадку как минимум в три раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше. Это количество энергии с единицы площади определяет возможности солнечной энергетики.
Перспективы выработки солнечной энергии также уменьшаются из-за глобального затемнения — антропогенного уменьшения солнечного излучения, доходящего до поверхности Земли.
Способы получения электричества и тепла из солнечного излучения
Достоинства солнечной энергетики
Недостатки солнечной энергетики
1. Фундаментальные проблемы
Проблема нахождения больших площадей земли под солнечные электростанции решается в случае применения солнечных аэростатных электростанций, пригодных как для наземного, так и для морского и для высотного базирования.
2. Технические проблемы
Проблема зависимости мощности солнечной электростанции от времени суток и погодных условий решается в случае солнечных аэростатных электростанций.
3. Экологические проблемы
В последнее время начинает активно развиваться производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния. Из-за низкого содержания кремния тонкоплёночные фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность. Так, например, в 2005 г. компания «Shell» приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству кремниевых фотоэлектрических элементов.
Типы фотоэлектрических элементов
В 2006 г. тонкоплёночные фотоэлементы занимали 7 % долю рынка. В 2005 г. на тонкоплёночные фотоэлементы приходилось 6 % рынка. В 2007 г. доля тонкоплёночных технологий увеличилась до 8 %.
За период с 1999 г. по 2006 г. поставки тонкоплёночных фотоэлементов росли ежегодно в среднем на 80 %.
Итоги развития фотоэлементной отрасли
Если в 1985 г. все установленные мощности мира составляли 21 МВт, то за один только 2006 г. было установлено 1744 МВт (по данным компании Navigant consulting), что на 19 % больше, чем в 2005 г. В Германии установленные мощности выросли на 960 МВт, что на на 16 % больше, чем в 2005 г. В Японии установленные мощности выросли на 296,5 МВт. В США установленные мощности выросли на 139,5 МВт (+ 33 %).
Ввод в строй новых мощностей в 2005 г.: Германия — 57 %; Япония — 20 %; США — 7 %; остальной мир — 16 %. Доля стран в суммарных установленных мощностях (на 2004 г.): Германия — 39 %; Япония — 30 %; США — 9 %; остальной мир — 22 %.
Производство фотоэлементов в мире выросло с 1656 МВт в 2005 г. до 1982,4 МВт. в 2006 г. Япония продолжает удерживать мировое лидерство в производстве — 44 % мирового рынка; в Европе производится 31 %. США производят 7 % от мирового производства, хотя в 2000 г. эта цифра доходила до 26 %.
В 2006 г. десять крупнейших производителей произвели 74 % фотоэлементов, в том числе:
Когда установленные мощности фотоэлементов в мире удваиваются, цена электричества, производимого солнечной энергетикой, падает на 20—30 %.
Минимальные цены на фотоэлементы (начало 2007 г.)
Стоимость кристаллических фотоэлементов на 40—50 % состоит из стоимости кремния.
Освещение зданий
Световые колодцы применяются для освещения помещений, не имеющих окон: подземные гаражи, станции метро, промышленные здания, склады, тюрьмы, и т.д.
Солнечная термальная энергетика
Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т.д., т.е. без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии.
В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии.
В 2007 году в Алжире началось строительство гибридных электростанций. В дневное время суток электроэнергия производится параболическими концентраторами, а ночью из природного газа.
Солнечная кухня
Традиционные очаги для приготовления пищи имеют термическую эффективность около 10%. Использование дров для приготовления пищи приводит к массированной вырубке лесов. Например, в Индии от сжигания биомассы ежегодно поступает в атмосферу более 68 млн. тонн СО2. В Уганде среднее домохозяйство ежемесячно потребляет 440 кг. дров.
Домохозяйки при приготовлении пищи вдыхают большое количество дыма, что приводит к увеличению заболеваемости дыхательных путей. По данным Всемирной организации здравоохранения в 2006 году в 19 странах южнее Сахары, Пакистане и Афганистане от заболеваний дыхательных путей умерло 800 тысяч детей и 500 тысяч женщин.
Существуют различные международные программы распространения солнечных кухонь. Например, в 2008 г. Финляндия и Китай заключили соглашение о поставках 19 000 солнечных кухонь в 31 деревню Китая. Это позволит сократить выбросы СО2 на 1,7 млн. тонн в 2008-2012 гг. В будущем Финляндия сможет продавать квоты на эти выбросы.
Использование солнечной энергии в химическом производстве
Солнечная энергия может применяться в различных химических процессах. Например:
Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте.
Солнечный транспорт
Фотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях, самолётах, дирижаблях и т.д.
Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства, или для электродвигателя электрического транспорта.
В Италии и Японии фотоэлектрические элементы устанавливают на крыши ж/д поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.
Компания Solatec LLC продаёт тонкоплёночные фотоэлектрические элементы для установки на крышу гибридного автомобиля Toyota Prius. Тонкоплёночные фотоэлементы имеют толщину 0,6 мм, что никак не влияет на аэродинамику автомобиля. Фотоэлементы предназначены для зарядки аккумуляторов, что позволяет увеличить пробег автомобиля на 10%.
Солнечная энергия
Солнечная энергия — общие понятия и принципы
Прежде всего, стоит отметить, что ресурсом для солнечной энергетики служит энергия солнечного света (солнечная энергия). Преобразовать которую можно либо в электрическую или же в тепловую энергию. Делается это при помощи специальных установок.
Исходя из расчётов учёных, можно сделать вывод, что за неделю на поверхность земли с солнца попадает такое количество энергии, которое в несколько раз превышает количество энергии вырабатываемой различными источниками на земле.
Несомненно, солнечная энергетика, это отрасль подающие большие надежды, но всё-таки она имеет две стороны медали.
С плюсами более или мене всё ясно. Это всеобщая доступность и неисчерпаемость ресурса. То к минусам стоит отнести такие аспекты как:
Числа и показатели для излучения энергии солнца
Разберёмся для начала в терминах и основных показателях. Прежде всего, это солнечная постоянная, значение которой равняется 1367 Вт. Как раз такая цифра в соотношении с поступившим количеством энергии попадает на один квадратный метр поверхности нашей планеты. Естественно в виду того, что лучам солнца препятствуют слои атмосферы, проникает несколько меньшее количество энергии. К примеру, в экваториальной зоне оно равняется 1020 Вт. Прибавив к этому частые смены времени дня и ночи, угол падения лучей солнца, можно увидеть, что показатели снижаются ещё как минимум в три раза.
Ни раз, задавая себе вопрос: «откуда берётся солнечная энергия?», учёные разных стран и в разное время пытались ответить на него, применяя различные гипотезы и теории. Но, уже начиная с 19 века, подобный интерес приобрёл иной характер. И на сегодняшний день обозначились более конкретные и чёткие постулаты в отношении солнечных источников энергии. Удалось установить, что в ходе процесса взаимодействия четырёх атомов водорода с последующим переходом в состоянии ядра гелия и происходит это превращение с выделением большого количества энергии.
Рассмотрим для наглядности энергию, выделяемую при формировании одного грамма водорода. Соотнести её можно с энергией полученной при сжигании пятнадцати тонн бензина. Цифры говорят сами за себя.
Преобразование солнечной энергии
Само собой после получения подобной энергии от солнца, её требуется перевести в определённое состояние. Происходит это потому, что в настоящее время технологии не способны удовлетворить потребности и нужды людей в потреблении больших количеств солнечной энергии. В виду этих факторов и были изобретены различные солнечные батареи и солнечный коллектор. Применяя первые, можно генерировать и получать электрическую энергию. Если же рассматривать коллекторы, то они предназначены для тепловой энергии.
Рассмотри наиболее востребованные способы преобразования энергии солнечного света:
Наибольшее распространение получил метод фотовольтаики. Данный метод состоит в использовании различных фотоэлектрических солнечных панелей. В простонародье получивших название солнечные батареи. При помощи них и происходит то самое преобразование солнечной в электроэнергию. Материалом, который используют при изготовлении подобных панелей, является кремний. Рабочая поверхность с толщиной не более одно милемметра.
Размещение и типы солнечных панелей
Такие панели можно размещать где угодно. Важно учитывать лишь большое количество солнечного света, которое должно без преград попадать на поверхность солнечной панели. Хорошим вариантом будут солнечные батареи для дома. Говоря попросту, это фото-пластины, которые устанавливаются либо на крыши загородных или многоквартирных домов.
Так же успешно применяются тонкоплёночные панели для преобразования солнечных лучей. Их разительным отличаем, является толщина, это даёт возможность размещать подобные панели практически в любом месте. Но коэффициент полезного действия у них на порядок ниже, чем у фото-пластин. Поэтому использование тонкоплёночных панелей будет целесообразно исключительно при небольшой поверхности для установки, например на балконе обычного многоэтажного дома или на крышке портативного компьютера.
Преобразование солнечной энергии в электроэнергию
Преобразование солнечной энергии в термовоздушной энергии происходит постепенно. Первый этап — это преобразование в энергию потока воздуха. Далее он направляется в турбогенератор.
Так же часто применяются аэростатные солнечные электростанции. Здесь генерирование пара воды происходит внутри самого аэростатного баллона.
Подобный эффект доступен для достижения посредством нагревания поверхности аэростата от солнечного света. На поверхность которого нанесено специальное покрытие обладающее селективно-поглощающим свойством. Основным преимуществом подобного способа является концентрация довольно внушительно объёма пара. Это позволяет работать станции в те моменты, когда по разным причинам генерация солнечной энергии не возможна. В ночное время или же когда не позволяют погодные условия.
Рассматривая принцип геотермальной энергии, нужно сразу отметить, что сам процесс так же крайне незамысловат. При попадании солнечных лучей на поверхность установки, происходит нагрев с дальнейшей фокусировкой и преображением принятого тепла в энергию.
Для понимания, приводим наиболее наглядный пример. Вода нагревается, а затем её можно подавать либо в отопительные батареи различных зданий, канализацию. Такой метод позволяет существенно снизить затраты газа и электроэнергии на подобные нужды. А в более крупных промышленных масштабах такой алгоритм уместен для получения электрической энергии, которую дают внушительные тепловые машины.
Сферы применения солнечной энергетики
Спектр применения энергии солнца крайне широк. Уже сейчас её используют на заводах, при строительстве, успешно применяют в химической промышленности, реализуют проекты отопительных установок воды для зданий и это лишь не многие примеры. Многие считаю, что применение солнечной энергетики — это процесс сравнительно недавний. Но, уже начиная с 1955 года, эти методы успешно применялись в строительстве автомобилей. Тогда и был выпущен первый прародитель нынешних электрокаров, которые успешно производят такие авто-гиганты как Honda, Toyota, Mitsubishi и другие.
Уже сегодня по всему миру в обиход входят установки при помощи, которых можно нагревать воду дома, готовить пищу и освещать жилые помещения. Ярким примером могут служить солнечные печи, состоящие из фольгированного картона, которые по инициативе ООН были предоставлены беженцам в разных странах переживающих сложную политическую обстановку. А на территории Узбекистана, например находится крупнейшая печь, успешно используемая при плавке различных металлов и термической обработке, но это уже совсем иные масштабы в отличие от бытовых.
Самыми необычными примерами где использовалась энергия, полученная от солнца являются:
Методы расчета мощности солнечных батарей
На земле существует большое количество альтернативных источников энергии. Каждый из них имеет свои особенности при использовании. И одним из самых экологичных является энергия солнечного света. На самом деле мощность солнечной энергии используется человечеством с древних времен и в различной форме:
Все это непостоянно, нагретые солнцем за день предметы ночью быстро остывают. Человечество долго думало о том, как бы сохранить мощность солнечной энергии. И только в XXI-ом столетии стало использовать ее для накопления в виде тепла и электричества. Получение электрической мощности из солнечного излучения – это довольно действенный способ. На сегодняшний день он используется для обеспечения энергией от одиночных домов до небольших поселений или комплексов. И даже учитывая крайне небольшое время качественного солнечного излучения, популярность использования панелей не утихает. Но чтобы определить целесообразность этого генератора, необходимо посчитать мощность солнечных батарей. Об этом речь пойдет ниже в статье, прежде необходимо ознакомиться с понятием «солнечное излучение».
Что такое солнечная энергия?
Солнечная энергия – на самом деле это огромная сила, но чтобы ее получить, необходимо приложить немало усилий. Все дело в том, что технологии изготовления солнечных генераторных панелей имеют высокую цену и порой при расчете выгоды может оказаться так, что установка таких у себя дома будет окупаться на протяжении десятков лет, при условии постоянно ясных дней. А на самом деле эта цифра увеличится как минимум в 5 раз, и выгода будет заметна только вашим внукам или правнукам. И то, если конструкция панелей будет надежна и сможет столько прослужить. В идеальном расчете современные солнечные батареи могут выдавать до 1,35 кВт/м кв. и для получения 10 кВт потребуется всего 7,5 кв. м панелей. Но это в идеальных условиях. В реальности — площади солнечных батарей потребуется в 5-6 раз больше для получения той же мощности.
КПД современных солнечных панелей
Современные солнечные панели обладают не так уж и большим КПД. Фотоэлемент, площадью 1 кв. м выдает в идеальных условиях 1 кВт электрической энергии. Но это условие справедливо, если расстояние от поверхности панели минимально. И солнце находиться над ней. А лучи – строго перпендикулярно к плоскости и прозрачность атмосферы составляет не менее 100%. Таким условиям соответствует лишь вершина горы в тропической зоне и ясную погоду. В нашей климатической зоне можно добиться максимум 20%. Следовательно, с 1 кв. м можно получить от 150 до 600 Вт электрической энергии. Все дело в том, что интенсивность солнца в наших широтах весьма мала. К примеру, рассматривая российские города от Архангельска до Южно-Сахалинска, за месяц эксплуатации солнечной батареи можно получить максимум 209.9 кВтч/м кв. И то, эта цифра справедлива только в Сочи. При установке солнечной панели в Архангельске, месячный максимум получится не более 159.7 кВтч/м кв.
В средних широтах, в которых собственно мы с вами и проживаем, показатель мощности солнечной энергии соответствует уровню 100 Вт/кв. м. Но и эти данные весьма неточные. Потому что при повышенной облачности эта цифра будет уменьшаться до 2 и более раз.
Виды солнечного излучения
В зависимости от потока излучение разделяется на 2 вида: рассеянное и прямое. В зависимости от вида освещения выбирается угол наклона панели, тем самым повышая КПД установки. При прямом излучении угол должен быть строго определен. При рассеянном излучении этот показатель не важен. Поскольку интенсивность освещения во всех точках пространства примерно равна. Но между двумя этими разновидностями имеется существенное отличие. Оно заключается в мощности солнечного излучения на квадратный метр. В первом случае она многократно раз превышает второй, обеспечивая панель мощным потоком фотонов. Но таких ясных деньков в наших широтах, да и по всей планете, не так уж много. Поэтому производителям панелей приходиться использовать весь научно-технический потенциал, чтобы получить максимум энергии из того излучения. Такие технологии станут многим не по карману. Не говоря уже о сроке окупаемости, который может стать непостижимым на нашем веку.
Как распределяется энергия в солнечном спектре?
Солнце представляет собой универсальный генератор, который вырабатывает потоки световой энергии не только различной мощности, но и различной частоты, что говорит о возможности разложения солнечного света в спектр. Весь его охватить не удастся, потому что принимающее тело должно быть идеально черного цвета. Тем более что не все виды излучений доходят до поверхности земли. Самые активные и энергонесущие потоки поглощаются другими телами в космосе и атмосфере. Задачей человечества стало определение диапазона частот, в котором поток световой энергии максимален. Традиционно спектр раскладывается не по частотам, а по длинам волн. И его грубо можно разделить на 3 зоны:
Зоной, где энергия фотонов самая высокая, является именно первый диапазон, но в нем частиц ничтожно мало, по сравнению с видимым диапазоном света. Поэтому для получения электрической энергии стали использовать именно видимый и инфракрасный диапазоны с длинами волн от 380 до 1800 мкм. Все, что выше относится к радиочастотному диапазону и энергия здесь также мала, по причине практически полного отсутствия энергии фотонов, несмотря на их большое количество и достаточную мощность солнечной энергии.
Проблема установки солнечных батарей
Главной проблемой установки солнечных батарей в наших климатических условиях является существенное различие в длительности светового дня в зависимости от поры года. Самый короткий день почти в 2,5 раза меньше самого длинного, что сказывается и на энергии излучения, которому зимой еще приходиться преодолевать и более толстые слои атмосферы. Следовательно, использование солнечных батарей в зимний период не даст никакой выгоды, а в летний период жарким днем выдаст не меньше энергии, чем на экваторе.
Что необходимо учитывать при расчете солнечного генератора
Солнечный свет, как и любая другая физическая величина, имеет ряд параметров. Они должны использоваться при расчете генератора. К ним относятся:
Размещение панелей
В наших климатических условиях важно предусмотреть систему автоматической коррекции положения панелей. Поскольку интенсивность солнечной энергии изменяется с течением дня, очень
Автоматическая коррекция положения панелей
Необходимо, чтобы лучи падали на приемные элементы перпендикулярно. Благодаря этому выбивая из них больше заряженных электронов. Но чтобы это обеспечить придется организовать поворот или наклон солнечных батарей с ходом солнца. При угле падения лучей в 30 градусов, коэффициент отражения лучей составляет не менее 5%. А 95% световой энергии оказываются полезными. При увеличении угла отражения до 60 градусов, потери вырастают вдвое. А при угле отражения 80 градусов коэффициент потерь находиться на отметке 40%. Но кроме угла отражения немаловажное значение имеет эффективная площадь перекрытия панели солнечным потоком. Эта величина расчетная. И находиться из отношения реальной площади к синусу угла между плоскостью и направлением солнечных лучей. В итоге: для получения постоянно качественного потока, панели необходимо время от времени поворачивать к солнцу. А это соответственно будет требовать определенных технологий, что оказывается весьма дорогостоящим удовольствием.
Ориентация панелей в одной плоскости
Можно пойти и простым путем, ориентировать солнечную батарею в одной плоскости под определенным углом. Например, для Москвы, расположена на 56 градусах широты) угол наклона к горизонту составит 56 градусов. А угол отклонения от вертикали 34 градуса. Тогда потребуется лишь обеспечить панели вращением в одной плоскости и возврат ее в исходную точку. Все это удорожает систему и делает ее менее надежной.
При конструировании системы поворота панелей большое значение имеет вес рамы, на которой будут располагаться фотоэлементы. И как следствие получается, что на вращение неоправданно расходуется мощность солнечной энергии. И это снижает количество полезной энергии.
Выбор фотоэлектрической системы для построения солнечного генератора
Для построения действительно качественного солнечного генератора необходимо учесть следующие данные: