в чем измеряется потенциальная энергия в физике
Кинетическая и потенциальная энергии
Кинетическая энергия
Работа всех сил, действующих на тело, равна работе равнодействующей силы.
Как видим, работа, совершенная силой, пропорционально изменению квадрата скорости тела.
Определение. Кинетическая энергия
Кинетическая энергия тела равна половине произведения массы тела на квадрат его скорости.
Теорема о кинетической энергии
Вновь обратимся к рассмотренному примеру и сформулируем теорему о кинетической энергии тела.
Теорема о кинетической энергии
Работа приложенной к телу силы равна изменению кинетической энергии тела. Данное утверждение справедливо и тогда, когда тело движется под действием изменяющейся по модулю и направлению силы.
Чтобы остановить тело, нужно совершить работу
Потенциальная энергия
Например, тело поднято над поверхностью земли. Чем выше оно поднято, тем больше будет потенциальная энергия. Когда тело падает вниз под действием силы тяжести, эта сила совершает работу. Причем работа силы тяжести определяется только вертикальным перемещением тела и не зависит от траектории.
Вообще о потенциальной энергии можно говорить только в контексте тех сил, работа которых не зависит от формы траектории тела. Такие силы называются консервативными.
Примеры консервативных сил: сила тяжести, сила упругости.
Когда тело движется вертикально вверх, сила тяжести совершает отрицательную работу.
При этом сила тяжести совершила работу, равную
Определение. Потенциальная энергия
Можно говорить о потенциальной энергии в поле силы тяжести, потенциальной энергии сжатой пружины и т.д.
Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.
Ясно, что потенциальная энергия зависит от выбора нулевого уровня (начала координат оси OY). Подчеркнем, что физический смысл имеет изменение потенциальной энергии при перемещении тел друг относительно друга. При любом выборе нулевого уровня изменение потенциальной энергии будет одинаковым.
При расчете движения тел в поле гравитации Земли, но на значительных расстояниях от нее, во внимание нужно принимать закон всемирного тяготения (зависимость силы тяготения от расстояния до цента Земли). Приведем формулу, выражающую зависимость потенциальной энергии тела.
Потенциальная энергия пружины
При этом работа силы упругости при изменении длины пружины на x в обоих случаях была одинакова и равна
Величина E у п р = k x 2 2 называется потенциальной энергией сжатой пружины. Она равна работе силы упругости при переходе из данного состояния тела в состояние с нулевой деформацией.
Концепция и классификация
Ещё в древности энергию определяли как свойство или способность, которые тела и вещества должны производить вокруг себя и которые во время преобразований обмениваются через два механизма: в форме работы или тепла. Правда, тогда еще не знали, что таким образом выполняется закон сохранения энергии. Но кроме физических изменений, проявляющихся, например, в подъёме объекта, его транспортировке, деформации или нагревании, энергия также присутствует в химических изменениях, таких как сжигание куска дерева или разложение воды электрическим током.
Энергия — это способность тела работать, а также сила, которая выполняет работу. Она может быть представлена в виде различных переходных форм:
В физике самая важная форма называется механической энергией. Это сумма и определение потенциальной и кинетической энергии, формула которой: E = Ek + Wp.
Энергия движения
Кинетическая энергия тела — это та, которой тело обладает благодаря своему движению. Её определяют как силу, необходимую для ускорения тела определённой массы от покоя до максимальной указанной скорости. Как только достигается ускорение, тело сохраняет энергию, если скорость не изменяется. Чтобы тело вернулось в состояние покоя, необходима отрицательная работа той же величины.
Единица измерения кинетической энергии — джоуль. Обычно она обозначается буквой E c или E k. Расчёт мощности измеряется по-разному. Для того чтобы найти её количество можно использовать онлайн-калькулятор.
История и определение
Прилагательное «кинетический» в названии произошло от древнегреческого слова кίνησις kinēsis, что означает «движение».
Идею связи классической механики и кинематической энергии впервые выдвинули Готфрид Вильгельм Лейбниц и Даниэль Бернулли. Учёный Грейвсанд из Нидерландов предоставил экспериментальное подтверждение этой связи.
Но первые теоретические выкладки этих идей приписаны Гаспар-Гюстав Кориолису, который в 1829 году опубликовал статью, где была изложена математика этого процесса. Сам термин появился в 1849 году благодаря Уильяму Томсону, более известному как лорд Кельвин.
Теорема о кинетической энергии гласит: изменение кинетической силы тела равно работе равнодействующей всех сил, действующих на тело. Эта теорема справедлива независимо от того, какие силы действуют на тело.
Часто различают кинетическую силу поступательного и вращательного движения. Как и любая физическая величина, которая является функцией скорости, она не только зависит от внутренней природы этого объекта, но также зависит от отношений между объектом и наблюдателем (в физике наблюдатель формально определяется классом определённая система координат, называемая инерциальной системой отсчёта).
Эта энергия деградирует и сохраняется в каждой трансформации, теряя способность совершать новые трансформации, но она не может быть создана или разрушена, только трансформирована, поэтому её сумма во вселенной всегда постоянна.
Кинематика системы частиц
Для частицы или для твёрдого тела, которое не вращается, кинетическая энергия падает до нуля, когда тело останавливается. Однако для систем, которые содержат много частиц с независимыми движениями, это не совсем верно.
Для твёрдого тела, которое вращается, полная кинетическая сила может быть разбита на две суммы: энергия перемещения, связанная со смещением центра масс тела в пространстве, и вращения (с вращательным движением с определённой угловой скоростью).
Потенциальная энергия
Этот термин был введён в XIX веке учёным Уильямом Ренкином и связан с механической энергией, которая зависит от расположения тела в силовом поле (гравитационное, электростатическое и т. д. ) или с наличием силового поля внутри тела.
Теорема о потенциальной энергии утверждает, что она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.
Независимо от силы, её порождающей, потенциальная энергия, которой обладает физическая система, хранится благодаря своему положению и / или конфигурации, в чём и заключается её различие с кинетической энергией.
Значение потенциала всегда зависит от нахождения или конфигурации, выбранной для её измерения, поэтому иногда говорят, что физически имеет значение только его изменение отношений между двумя конфигурациями.
Потенциальная энергия присутствует не только в классической физике, но также в релятивистской и квантовой физике. Эта концепция также была распространена на физику элементарных частиц.
Смысл потенциальной силы связан с работой, выполняемой силами физической системы для перемещения её из одного состояния в другое. А её функция будет существенно зависеть от типа силового поля или взаимодействия, действующего на систему.
Это относится, например, к атомной физике при получении электронных состояний атома или к молекулярной физике для получения таких состояний молекулы, как:
В других более общих формулировках физики потенциальная функция также играет важную роль. Среди них лагранжева и гамильтонова формулировки механики.
Гравитационная сила
Потенциальной гравитацией обладают тела в силу того, что они имеют массу и находятся на определённом взаимном расстоянии. Среди огромных масс действуют силы притяжения. Применительно, например, к планетарному движению, основная масса солнечной системы состоит из массы Солнца, которая создаёт гравитационное силовое поле, воздействующее на малые массы планет. В свою очередь, каждая планета создаёт такое же поле, которое воздействует на второстепенные тела, находящиеся на её поверхности. Зависимость силы тяжести от высоты можно изобразить на графике. При увеличении массы тела линейно увеличивается и она.
Энергия упругой деформации
Эластичность — это свойство определённых материалов, благодаря которому, будучи деформированными, растянутыми или отделёнными от своего исходного положения, они могут восстановить своё первоначальное состояние или равновесие. Восстановительными силами, ответственными за восстановление, являются силы упругости, как в случае пружин, резиновых полос или струн музыкальных инструментов.
Многие древние военные машины использовали эти силы для запуска объектов на расстоянии, таких как дуга, которая стреляет стрелой, арбалет или катапульта. Вибрации или колебания материальных объектов, вызванные упругими силами, являются источником звуковых волн. Силы восстановления, когда объект восстанавливает свою первоначальную форму практически без какого-либо демпфирования или деформации, являются консервативными, и может быть получена упругая сила.
Пружина является примером упругого объекта, который точно восстанавливает первоначальную форму: при растяжении он создаёт упругую силу, стремящуюся вернуть его к первоначальной длине. Экспериментально подтверждено, что эта восстановительная сила пропорциональна растянутой длине пружины. Способ выразить эту пропорциональность между силой и растянутой суммой — через закон Гука.
Коэффициент пропорциональности при этой деформации зависит от типа материала и рассматриваемой геометрической формы. Для твёрдых тел сила упругости обычно описывается в терминах величины деформации, вызванной растягивающей силой, возникающей в результате этого растяжения, называемого упругостью или модулем Юнга. Для жидкостей и газов это выражается изменением давления, способного вызвать изменение объёма, и называется модулем сжимаемости.
Одним из свойств упругости твёрдого тела или жидкости при растяжении или деформации является то, что растяжение или деформация пропорциональны приложенному усилию. То есть для создания двойного растяжения потребуется двойная сила. Эта линейная зависимость смещения от приложенной силы известна как закон Гука.
Прикладное значение
Потенциальная электростатическая энергия может храниться с помощью конденсаторов. Конденсатор — это устройство, которое накапливает её внутри. Чтобы сохранить электрический заряд, он использует две проводящие поверхности, как правило, в форме листов или пластин, разделённых диэлектрическим материалом (изолятором). Эти платы являются электрически заряженными при подключении к источнику питания.
Две пластины имеют одинаковую величину, но с разными знаками, причём величина нагрузки пропорциональна приложенной разности потенциалов. Константа пропорциональности между зарядом, приобретённым конденсатором, и разностью потенциалов, достигнутой между двумя пластинами, называется ёмкостью конденсатора:
Области применения конденсаторов многочисленны в области электроники, и, следовательно, они также предназначены для бытовых приборов. В современных технологических приложениях их используют:
В этих применениях современной технологии конденсаторы способны накапливать электростатическую энергию в течение коротких периодов времени и с не слишком высокими значениями.
Потенциальная энергия.
Потенциальная энергия – энергия взаимодействия тел. Потенциальной энергией тело само по себе не может обладать. Потенциальная энергия определяется силой, действующей на тело со стороны другого тела. Поскольку взаимодействующие тела равноправны, то потенциальной энергией обладают только взаимодействующие тела.
Какова работа, совершаемая силой тяжести при перемещении тела массой m вертикально вниз с высоты h1 над поверхностью Земли до высоты h2. Если разность h1 – h2 пренебрежимо мала по сравнению с расстоянием до центра Земли, то силу тяготения во время движения тела можно считать постоянной и равной .
Поскольку перемещение по направлению совпадает с вектором силы тяжести, то работа силы тяжести равна:
Теперь рассмотрим движение тела по наклонной плоскости. При перемещении тела вниз по наклонной плоскости сила тяжести совершает работу
Из рисунка видно, что scosα = h, следовательно
Выходит, что работа силы тяжести не зависит от траектории движения тела.
Т. е. работа силы тяжести при перемещении тела массой m из точки h1 в точку h2 по любой траектории равна изменению некоторой физической величины mgh с противоположным знаком.
Физическая величина, равная произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называется потенциальной энергией тела.
Потенциальную энергию обозначают через Ер. Ер = mgh, следовательно:
Тело может обладать как положительной, так и отрицательной потенциальной энергией. Тело массой m на глубине h от поверхности Земли обладает отрицательной потенциальной энергией: Ер = – mgh.
Рассмотрим потенциальную энергию упругодеформированного тела.
Прикрепим к пружине с жесткостью k брусок, растянем пружину и отпустим брусок. Под действием силы упругости растянутая пружина приведет в действие брусок и переместит его на некоторое расстояние. Вычислим работу силы упругости пружины от некоторого начального значения x1 до конечного x2.
Сила упругости в процессе деформации пружины изменяется. Чтобы найти работу силы упругости можно взять произведение среднего значения модуля силы и модуля перемещения:
Так как сила упругости пропорциональна деформации пружины, то среднее значение ее модуля равно
Подставив это выражение в формулу работы силы, получим:
Физическую величину, равную половине произведения жесткости тела на квадрат его деформации, называют потенциальной энергией упругодеформированного тела:
Как и величина mgh, потенциальная энергия упругодеформированного тела зависит от координат, поскольку x1 и x2 – это удлинения пружины и в то же время – координаты конца пружины. Поэтому можно сказать, что потенциальная энергия во всех случаях зависит от координат.
Потенциальная энергия, ее определение, виды и формулы
Определение потенциальной энергии
Энергия, говоря простым языком, это возможность что-либо сделать, возможность совершить работу. То есть, если какое-либо тело может совершить какую-либо работу, то про это тело можно сказать, что оно обладает энергией. По сути, энергия — это мера различных форм движения и взаимодействия материи, а её изменение происходит при совершении некоторой работы. Таким образом, совершённая работа всегда равна изменению какой-либо энергии. А значит, рассматривая вопрос о совершённой телом работе, мы неизбежно приходим к изменению какого-либо вида энергии. Вспомним также и тот факт, что работа совершается только в том случае, когда тело под действием некоторой силы движется, и при этом сама работа определяется как скалярное произведение вектора этой силы и вектора перемещения, то есть А = F*s*cosa, где а — угол между вектором силы и вектором перемещения. Это нам пригодится в дальнейшем для вывода формул различных видов энергии.
Энергию, связанную с взаимодействием тел, называют ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ. Иначе говоря, если тело за счёт взаимодействия с другим телом может совершить некоторую работу, то оно будет обладать потенциальной энергией, и при совершении работы будет происходить изменение этой энергии. Обозначают механическую потенциальную энергию чаще всего — Еп.
Виды потенциальной энергии
Существуют различные виды потенциальной энергии. К примеру, любое тело на Земле находится в гравитационном взаимодействии с Землёй, а значит обладает потенциальной энергией гравитационного взаимодействия. И ещё пример — витки растянутой или сжатой пружины находятся в упругом взаимодействии друг с другом, а значит сжатая или растянутая пружина будет обладать потенциальной энергией упругого взаимодействия.
Далее мы рассмотрим только виды механической потенциальной энергии и формулы, по которым их можно рассчитать. Но в дальнейшем вы узнаете и о других видах потенциальной энергии — к примеру, о потенциальной энергии электрического взаимодействия заряженных тел, о потенциальной энергии взаимодействия электрона с атомным ядром.
Формулы потенциальной энергии
Перед тем как приступить к выводу формул потенциальной энергии, ещё раз вспомним, что совершённая телом или над телом работа равна изменению его энергии. При этом, если само тело совершает работу, то его энергия уменьшается, а если над телом совершают работу, то его энергия увеличивается. К примеру, если спортсмен поднимает штангу, то он сообщает ей потенциальную энергию гравитационного взаимодействия, а если он отпускает штангу и она падает, то потенциальная энергия гравитационного взаимодействия штанги с Землёй уменьшается. Также, если вы открываете дверь, растягивая пружину, то вы сообщаете пружине потенциальную энергию упругого взаимодействия, но если потом дверь закрывается, благодаря сжатию пружины в начальное состояние, то и энергия упругой деформации пружины уменьшается до нуля.
А) Чтобы вывести формулу потенциальной энергии гравитационного взаимодействия, рассмотрим, какую работу совершает тело, двигаясь под действием силы тяжести:
А = F*s = mg*s = mg*(h1 — h2) = mgh1 — mgh2 = Eп1 — Еп2, то есть, мы получили, что потенциальная энергия гравитационного взаимодействия тела с Землёй может быть вычислена по формуле: Еп = mgh.
Здесь важно отметить, что поверхность Земли принимается за начало отсчёта высоты, то есть для тела, находящегося на поверхности Земли Еп = 0, для тела, поднятого над Землёй Еп > 0, а для тела, находящегося в яме глубиной h, Еп 2 /2 = 0 — kх 2 /2 = Еп1 — Еп2.
В итоге, мы получили формулу потенциальной энергии упругой деформации: Еп = kx 2 /2.
Методические советы учителям
1) Обязательно обратите внимание учащихся на связь энергии и работы.
2) Не давайте учащимся формулы потенциальной энергии без вывода.
3) Обратите внимание учащихся на то, что оба вида потенциальной энергии зависят от выбора начальной точки, то есть от системы координат.
4) При выводе формул потенциальной энергии обязательно поясните учащимся почему отсутствует cosa в формуле работы.
5) Отметьте, что и работа силы тяжести, и работа силы упругости не зависят от формы траектории и, следовательно равны нулю на замкнутой траектории — это общее и важное свойство всех потенциальных сил.
Потенциальная энергия
Единицей измерения энергии в СИ является Джоуль.
Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.
Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными.
Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.
Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.
Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.
Содержание
Потенциальная энергия в поле тяготения Земли
Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой:
где — масса тела, — ускорение свободного падения, — высота положения центра масс тела над произвольно выбранным нулевым уровнем.
О физическом смысле понятия потенциальной энергии
См. также
Ссылки
Полезное
Смотреть что такое «Потенциальная энергия» в других словарях:
потенциальная энергия — Энергия, которой обладает объект благодаря его положению в геопотенциальном поле. Например, потенциальная энергия первоначально расслоенного столба воды увеличивается по мере того, как энергия ветра перемешивает его и выносит более соленую… … Справочник технического переводчика
ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ — энергия взаимодействия тел; является частью полной механической энергии физ. системы, зависящей от взаимного расположения её частиц и от их положения во внешнем силовом поле (напр. гравитационном); др. частью полной механической системы является… … Большая политехническая энциклопедия
ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ — ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ, вид ЭНЕРГИИ, которой обладает тело, благодаря его положению на определенной высоте в ГРАВИТАЦИОННОМ ПОЛЕ Земли. Потенциальной энергией также является энергия, запасенная в такой системе, как сжатая пружина, или в… … Научно-технический энциклопедический словарь
ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ — часть общей механич. энергии системы, зависящая от взаимного расположения материальных точек, составляющих эту систему, и от их положений во внеш. силовом поле (напр., гравитационном; (см. ПОЛЯ ФИЗИЧЕСКИЕ). Численно П. э. системы в данном её… … Физическая энциклопедия
ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ — ПОТЕНЦИАЛЬНАЯ энергия, часть общей механической энергии системы, зависящая от взаимного расположения ее частиц и от их положения во внешнем силовом (например, гравитационном) поле. В сумме с кинетической энергией потенциальная энергия составляет… … Современная энциклопедия
Потенциальная энергия — ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ, часть общей механической энергии системы, зависящая от взаимного расположения ее частиц и от их положения во внешнем силовом (например, гравитационном) поле. В сумме с кинетической энергией потенциальная энергия составляет… … Иллюстрированный энциклопедический словарь
ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ — часть общей механической энергии системы, зависящая от взаимного расположения ее частиц и от их положения во внешнем силовом (напр., гравитационном) поле … Большой Энциклопедический словарь
потенциальная энергия — [potential energy] часть общей механической энергия системы, зависящая от взаимного расположения частиц, составляющих эту систему, и от их положения во внешнем силовом поле (например, гравитационном). Численно потенциальная энергия системы равна… … Энциклопедический словарь по металлургии
потенциальная энергия — часть общей механической энергии системы, зависящая от взаимного расположения её частиц и от их положения во внешнем силовом (например, гравитационном) поле. * * * ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ, часть общей механической энергии… … Энциклопедический словарь