в чем измеряется плотность воды
Единицы измерения плотности.
Окружающие нас тела состоят из различных веществ: железа, дерева, резины и пр. Масса любого тела зависит не только от его размеров, но и от вещества, из которого оно состоит. Тела одинакового объема, состоящие из разных веществ, имеют разные массы. Например, взвесив два цилиндра из разных веществ – алюминия и свинца, увидим, что масса алюминиевого меньше массы свинцового цилиндра.
Отсюда следует, что тела с одинаковым объемом, состоящие из разных веществ, имеют разные массы.
Плотность показывает, чему равна масса вещества, взятого в определенном объеме. То есть, если известна масса тела и его объем, можно определить плотность. Чтобы найти плотность вещества, надо массу тела разделить на его объем.
Обозначим данные величины буквами: плотность – ρ, масса тела – m, объем – V. Получим формулу вычисления плотности: ρ = m/V.
Единицей плотности вещества в СИ является килограмм на кубический метр (1кг/м 3 ).
Плотность одного и того же вещества в твердом, жидком и газообразном состояниях различна.
Плотность некоторых твердых тел, жидкостей и газов приведена в таблицах.
Плотности некоторых твердых тел (при норм. атм. давл., t = 20 ° C ).
Твердое тело
ρ, кг/м 3
ρ, г/см 3
Твердое тело
ρ, кг/м 3
ρ, г/см 3
Плотность
Плотность — это интенсивность распределения одной величины по другой.
Термин объединяет несколько различных понятий, таких как: плотность вещества; оптическая плотность; плотность населения; плотность застройки; плотность огня и многие другие. Рассмотрим два понятия, касающихся неразрушающего контроля.
1. Плотность вещества.
В физике плотностью вещества называют массу этого вещества, содержащуюся в единице объёма при нормальных условиях. Тела одинакового объёма, изготовленные из различных веществ, обладают различной массой, что и характеризует их плотность. К примеру, два куба одинаковых размеров, изготовленные из чугуна и алюминия, будут отличаться весом и плотностью.
Чтобы вычислить плотность какого-либо тела, нужно точно определить его массу и разделить её на точный объём этого тела.
кг/м 3
— Единицы измерения
плотности в международной
системе единиц (СИ)
г/см 3
— Единицы измерения
плотности в системе СГС
Выведем формулу вычисления плотности.
Для примера определим плотность бетона. Возьмём бетонный кубик весом 2,3 кг со стороной 10 см. Подсчитаем объём кубика.
Подставляем данные в формулу.
Бетонный куб со стороной 10 см
График зависимости плотности воды от температуры
От чего зависит плотность вещества
Плотность вещества меняется и при изменении его агрегатного состояния. Она скачкообразно растёт при переходе вещества из газообразного в жидкое состояние, и далее — в твёрдое. Здесь также есть исключения: плотность воды, висмута, кремния и некоторых других веществ снижается при затвердевании.
Чем измеряется плотность вещества
Для измерения плотности различных веществ применяются специальные приборы и приспособления. Так, плотность жидкостей и концентрация растворов измеряется различными ареометрами. Несколько разновидностей пикнометров предназначены для измерения плотности твёрдых тел, жидкостей и газов.
Металлический пикнометр
2. Оптическая плотность.
В физике оптической плотностью называют способность прозрачных материалов поглощать свет, а непрозрачных — отражать его. Это понятие в большинстве случаев характеризует степень ослабления светового излучения при прохождении его через слои и плёнки различных веществ.
Оптическую плотность принято выражать десятичным логарифмом отношения падающего на объект потока излучения к потоку, прошедшему через объект или отражённому от него:
Оптическая плотность=логарифм (поток излучения, падающий на объект где D – оптическая плотность; F0 – поток излучения, падающий на объект; F – поток излучения, прошедший через объект или отражённый от него).
В радиографическом методе контроля оптическая плотность является одним из основных параметров, определяющих пригодность снимков для их расшифровки. Допустимые значения этого параметра обусловлены требованиями ГОСТ 7512-82 (раздел 6 – расшифровка снимков).
Оптическая плотность измеряется в Беллах, сокращённое обозначение — «Б». Для измерения оптической плотности используется денситометр. Прибор сравнивает яркость негатоскопа и яркость точки на плёнке. По этим двум значениям прибор определяет оптическую плотность. Чем выше плотность, тем темнее изображение.
Денситометр ДП 5004
Плотность воды: что это и при каких условиях какие имеет значения
Плотность вещества, как известно, различается по его состоянию. Существует всего три формы: жидкое, твердое и газ. Закономерно, что в большинстве случаев твердые вещества плотнее, чем жидкие и газообразные тела. Для вычисления используется формула (деление удельной массы на единицу объема) — p=m/V. Единицы того, в чем измеряется плотность, обычно составляют кг на м³, либо г на мл, если это жидкость. Но существует жидкое вещество, выбивающееся из общей структуры – исключением является вода.
Что такое плотность воды?
Вода уникальна тем, что это единственная материя, встречающаяся в трёх различных состояниях. Соответственно, в жидком она встречается повсеместно — это можно назвать исходной формой. Её твердое состояние — лёд, снег, а газообразное — водяной пар. Вещество в любой форме имеет одно химическое обозначение — H 2 O.
Каждая форма состояния воды имеет собственную характеристику:
Кроме того, твердая форма всегда имеет отрицательную температуру, то есть всегда холодная. Вода, в свою очередь, бывает любой температуры, но при высокой начинает испаряться — так, пар бывает только горячим. Впрочем, он остывает при смешивании с воздухом и растворяется, поднимаясь выше от источника.
Отличаются и другие характеристики: снег быстро растает, если его поместить в воду, а лёд будет какое-то время плавать. Снежную массу и воду можно окрашивать, а лёд и пар — нет. Конечно, получить цветные льдинки возможно, но для этого нужно замораживать окрашенную воду. Однако, следует учесть, что такое окрашивание может незначительно изменить параметр плотности из-за использованного красителя.
Плотность воды по-своему уникальна, поскольку замерзшей она имеет вес меньший, чем обычно. Соответственно, параметр также снижается. Иначе говоря, замерзшая вода на разных стадиях заморозки будет иметь вес всё меньше и меньше. Так, полностью заледеневшая вода имеет массу меньшую, чем снег. А водяной пар весит и того меньше, следовательно, его плотность также уменьшается и как её определить — неизвестно.
Параметр вычисляется массой, разделенной на единицы объема в кг на м³. Другие особенности:
Максимальный зарегистрированный параметр составил 1000кг на м³ при температуре в пределах 3-4°C. Увеличение и снижение показали схожие результаты на понижение плотности. Можно сделать вывод, что наибольшую плотность вода имеет в этом температурном диапазоне.
Какова плотность воды
Основная масса воды во многом зависит сразу от трёх факторов — солёности (либо наличия других добавок, которые повышают массу и температуру), сколько градусов составляет она сама, а также наличия постоянного давления. Причем вычислить точный параметр можно только при условии неизменности третьего фактора.
Разные типы воды (угнетение составляет 1атм, а данные приводятся ориентировочно):
Помимо морской, в которой параметр завышается из-за солей, есть ещё один вид воды с высокой концентрацией. Объем воды, залегающей в грунте, составляет в среднем 1010-1210 кг/м³, величина относительная и зависит от минерализации.
Вода по этому параметру близка по значению многим продуктам питания. Но напитки и соки, как правило, имеют большую массу, которая приравнивается к морской воде. Другие вещества значительно уступают: спирты намного легче, как и плотность нефти (730-940 кг/м³) и другого топлива. Наибольшей считается плотность ртути — она достигает 13,5 кг при комнатной температуре.
Разная плотность жидких веществ различно их характеризует. Те вещества, чья концентрация выше, чем у воды, начинают тонуть и смешиваться в результате. Другие остаются на поверхности. Таким образом, ртуть тонет и растворяется в воде, а нефть остается при разливе на поверхности. Ещё один пример: айсберги именно плавают, а не остаются статичными. Несмотря на большую массу, их плотность значительно меньше соленой океанской воды, это удерживает их на поверхности и заставляет дрейфовать.
Плотность воды и температура
Вода — это отдельная жидкость, которая остается в обычном состоянии при плюсовых температурах от 0 до 374°С. Последнее является критической отметкой, при которой образуется водяной пар, а всё, что ниже нуля — уже снег и лёд.
t, °С | ρ, кг/м 3 | ρ, г/мл | t, °С | ρ, кг/м 3 | ρ, г/мл | t, °С | ρ, кг/м 3 | ρ, г/мл |
0 | 999 | 0,999 | 62 | 982,1 | 0,9821 | 200 | 864,7 | 0,8647 |
0,1 | 999 | 0,999 | 64 | 981,1 | 0,9811 | 210 | 852,8 | 0,8528 |
2 | 999 | 0,999 | 66 | 980 | 0,98 | 220 | 840,3 | 0,8403 |
4 | 1000 | 1 | 68 | 978,9 | 0,9789 | 230 | 827,3 | 0,8273 |
6 | 999 | 0,999 | 70 | 977,8 | 0,9778 | 240 | 813,6 | 0,8136 |
8 | 999 | 0,999 | 72 | 976,6 | 0,9766 | 250 | 799,2 | 0,7992 |
10 | 999 | 0,999 | 74 | 975,4 | 0,9754 | 260 | 783,9 | 0,7839 |
12 | 999 | 0,999 | 76 | 974,2 | 0,9742 | 270 | 767,8 | 0,7678 |
14 | 999 | 0,999 | 78 | 973 | 0,973 | 280 | 750,5 | 0,7505 |
16 | 999 | 0,999 | 80 | 971,8 | 0,9718 | 290 | 732,1 | 0,7321 |
18 | 998,6 | 0,9986 | 82 | 970,5 | 0,9705 | 300 | 712,2 | 0,7122 |
20 | 998,2 | 0,9982 | 84 | 969,3 | 0,9693 | 305 | 701,7 | 0,7017 |
22 | 997,8 | 0,9978 | 86 | 967,8 | 0,9678 | 310 | 690,6 | 0,6906 |
24 | 997,3 | 0,9973 | 88 | 966,6 | 0,9666 | 315 | 679,1 | 0,6791 |
26 | 996,8 | 0,9968 | 90 | 965,3 | 0,9653 | 320 | 666,9 | 0,6669 |
28 | 996,2 | 0,9962 | 92 | 963,9 | 0,9639 | 325 | 654,1 | 0,6541 |
30 | 995,7 | 0,9957 | 94 | 962,6 | 0,9626 | 330 | 640,5 | 0,6405 |
32 | 995 | 0,995 | 96 | 961,2 | 0,9612 | 335 | 625,9 | 0,6259 |
34 | 994,4 | 0,9944 | 98 | 959,8 | 0,9598 | 340 | 610,1 | 0,6101 |
36 | 993,7 | 0,9937 | 100 | 958,4 | 0,9584 | 345 | 593,2 | 0,5932 |
38 | 993 | 0,993 | 105 | 954,5 | 0,9545 | 350 | 574,5 | 0,5745 |
40 | 992,2 | 0,9922 | 110 | 950,7 | 0,9507 | 355 | 553,3 | 0,5533 |
42 | 991,4 | 0,9914 | 115 | 946,8 | 0,9468 | 360 | 528,3 | 0,5283 |
44 | 990,6 | 0,9906 | 120 | 942,9 | 0,9429 | 362 | 516,6 | 0,5166 |
46 | 989,8 | 0,9898 | 125 | 938,8 | 0,9388 | 364 | 503 | 0,503 |
48 | 988,9 | 0,9889 | 130 | 934,6 | 0,9346 | 366 | 488 | 0,488 |
50 | 988 | 0,988 | 140 | 925,8 | 0,9258 | 368 | 470 | 0,470 |
52 | 987 | 0,987 | 150 | 916,8 | 0,9168 | 370 | 448 | 0,448 |
54 | 986 | 0,986 | 160 | 907,3 | 0,9073 | 371 | 435 | 0,435 |
56 | 985 | 0,985 | 170 | 897,3 | 0,8973 | 372 | 418,1 | 0,4181 |
58 | 984 | 0,984 | 180 | 886,9 | 0,8869 | 373 | 396,2 | 0,3962 |
60 | 983 | 0,983 | 190 | 876 | 0,876 | 374,12 | 317,8 | 0,3178 |
Таблица плотности показывает основные значения, однако следует учитывать, что они приведены ориентировочно. На измерение, помимо температуры, может влияет масса факторов. Потому температуру в 20°С принимают как среднее между 19°С и 21°С. Также в таблице приведены значения, рассчитанные на обычной чистой воде. Морская или солёная будет иметь большую плотность, которую можно посмотреть в другой таблице.
Другая особенность, уже отмеченная ранее, заключается в том, как при повышении, так и при снижении температуры плотность уменьшается. Масса при нормальных условиях (приведенной температуре) отличается от концентрации на высоких температурах.
Смена агрегатного состояния существенно меняется, отсюда появилась характерная черта с колебаниями параметра в пределах измерений. Плотность льда приводится в значении 920 кг/м3, а пар всего сотые доли объема. При этом химия определяет один параметр измерения для всех состоянии.
Плотность воды: аномалия
Аномалия заключается в том, что жидкое состояние увеличивает плотность до температуры в 4°С, а далее — понижается. Другими словами, именно в этом отрезке вода достигает максимальной плотности. Но в других агрегатных состояниях параметр становится на порядок ниже: у пара его сложно рассчитать, он практически невесомый, а лёд и снег меньше почти на 100 кг.
Аномалии плотности воды вызывают следующие явления:
Отклонение в полной мере демонстрируется на примере льда. Он не тонет, поскольку его плотность меньше, чем у воды. Аналогичная ситуация складывается со снегом — он плавает на поверхности, пока не растает. При смешивании талой воды с обычной на поверхности появляются видимые разводы — это эффект смешивания, когда жидкость набирает аналогичную концентрацию. Однако в похожей ситуации с топливом или маслами такое не пройдет, они останутся на поверхности. Растаявший снег всё ещё вода, а другие жидкости ей не станут.
Свойство плотности имеет большое значение для живых организмов. Из-за него водоемы промерзают сверху вниз, позволяя выжить находящимся подо льдом формам жизни. Уникальные характеристики воды с её тремя состояниями только подтверждают мысль, что природа полностью гармонична.
Плотность воды, теплопроводность и физические свойства H2O
Рассмотрены физические свойства воды: плотность воды, теплопроводность, удельная теплоемкость, вязкость, число Прандтля и другие. Свойства представлены при различных температурах в виде таблиц.
Плотность воды в зависимости от температуры
Вода существует как отдельная жидкость в диапазоне температуры от 0 до максимальной 374,12°С — это ее критическая температура, при которой исчезает граница раздела между жидкостью и водяным паром. Значения плотность воды при этих температурах можно узнать в таблице ниже. Данные о плотности воды представлены в размерности кг/м 3 и г/мл.
В таблице приведены значения плотности воды в кг/м 3 и в г/мл (г/см 3 ), допускается интерполяция данных. Например, плотность воды при температуре 25°С можно определить, как среднее значение от величин ее плотности при 24 и 26°С. Таким образом, при температуре 25°С вода имеет плотность 997,1 кг/м 3 или 0,9971 г/мл.
t, °С | ρ, кг/м 3 | ρ, г/мл | t, °С | ρ, кг/м 3 | ρ, г/мл | t, °С | ρ, кг/м 3 | ρ, г/мл |
---|---|---|---|---|---|---|---|---|
0 | 999,8 | 0,9998 | 62 | 982,1 | 0,9821 | 200 | 864,7 | 0,8647 |
0,1 | 999,8 | 0,9998 | 64 | 981,1 | 0,9811 | 210 | 852,8 | 0,8528 |
2 | 999,9 | 0,9999 | 66 | 980 | 0,98 | 220 | 840,3 | 0,8403 |
4 | 1000 | 1 | 68 | 978,9 | 0,9789 | 230 | 827,3 | 0,8273 |
6 | 999,9 | 0,9999 | 70 | 977,8 | 0,9778 | 240 | 813,6 | 0,8136 |
8 | 999,9 | 0,9999 | 72 | 976,6 | 0,9766 | 250 | 799,2 | 0,7992 |
10 | 999,7 | 0,9997 | 74 | 975,4 | 0,9754 | 260 | 783,9 | 0,7839 |
12 | 999,5 | 0,9995 | 76 | 974,2 | 0,9742 | 270 | 767,8 | 0,7678 |
14 | 999,2 | 0,9992 | 78 | 973 | 0,973 | 280 | 750,5 | 0,7505 |
16 | 999 | 0,999 | 80 | 971,8 | 0,9718 | 290 | 732,1 | 0,7321 |
18 | 998,6 | 0,9986 | 82 | 970,5 | 0,9705 | 300 | 712,2 | 0,7122 |
20 | 998,2 | 0,9982 | 84 | 969,3 | 0,9693 | 305 | 701,7 | 0,7017 |
22 | 997,8 | 0,9978 | 86 | 967,8 | 0,9678 | 310 | 690,6 | 0,6906 |
24 | 997,3 | 0,9973 | 88 | 966,6 | 0,9666 | 315 | 679,1 | 0,6791 |
26 | 996,8 | 0,9968 | 90 | 965,3 | 0,9653 | 320 | 666,9 | 0,6669 |
28 | 996,2 | 0,9962 | 92 | 963,9 | 0,9639 | 325 | 654,1 | 0,6541 |
30 | 995,7 | 0,9957 | 94 | 962,6 | 0,9626 | 330 | 640,5 | 0,6405 |
32 | 995 | 0,995 | 96 | 961,2 | 0,9612 | 335 | 625,9 | 0,6259 |
34 | 994,4 | 0,9944 | 98 | 959,8 | 0,9598 | 340 | 610,1 | 0,6101 |
36 | 993,7 | 0,9937 | 100 | 958,4 | 0,9584 | 345 | 593,2 | 0,5932 |
38 | 993 | 0,993 | 105 | 954,5 | 0,9545 | 350 | 574,5 | 0,5745 |
40 | 992,2 | 0,9922 | 110 | 950,7 | 0,9507 | 355 | 553,3 | 0,5533 |
42 | 991,4 | 0,9914 | 115 | 946,8 | 0,9468 | 360 | 528,3 | 0,5283 |
44 | 990,6 | 0,9906 | 120 | 942,9 | 0,9429 | 362 | 516,6 | 0,5166 |
46 | 989,8 | 0,9898 | 125 | 938,8 | 0,9388 | 364 | 503,5 | 0,5035 |
48 | 988,9 | 0,9889 | 130 | 934,6 | 0,9346 | 366 | 488,5 | 0,4885 |
50 | 988 | 0,988 | 140 | 925,8 | 0,9258 | 368 | 470,6 | 0,4706 |
52 | 987,1 | 0,9871 | 150 | 916,8 | 0,9168 | 370 | 448,4 | 0,4484 |
54 | 986,2 | 0,9862 | 160 | 907,3 | 0,9073 | 371 | 435,2 | 0,4352 |
56 | 985,2 | 0,9852 | 170 | 897,3 | 0,8973 | 372 | 418,1 | 0,4181 |
58 | 984,2 | 0,9842 | 180 | 886,9 | 0,8869 | 373 | 396,2 | 0,3962 |
60 | 983,2 | 0,9832 | 190 | 876 | 0,876 | 374,12 | 317,8 | 0,3178 |
Кроме того, вы также можете ознакомиться с таблицей плотности веществ и материалов.
Физические свойства воды при температуре от 0 до 100°С
В таблице представлены следующие физические свойства воды: плотность воды ρ, удельная энтальпия h, удельная теплоемкость Cp, теплопроводность воды λ, температуропроводность воды а, вязкость динамическая μ, вязкость кинематическая ν, коэффициент объемного теплового расширения β, коэффициент поверхностного натяжения σ, число Прандтля Pr. Физические свойства воды приведены в таблице при нормальном атмосферном давлении в интервале от 0 до 100°С.
Такое свойство воды, как теплопроводность (или правильнее — коэффициент теплопроводности) при нагревании имеет тенденцию к увеличению. Теплопроводность воды при температуре кипения 100°С достигает значения 0,683 Вт/(м·град). Температуропроводность H2O также увеличивается при росте ее температуры.
Следует отметить нелинейное поведение кривой зависимости удельной теплоемкости этой жидкости от температуры. Ее значение снижается в интервале от 0 до 40°С, затем происходит постепенный рост теплоемкости до величины 4220 Дж/(кг·град) при 100°С.
Теплофизические свойства воды на линии насыщения (100…370°С)
В таблице представлены теплофизические свойства воды H2O на линии насыщения в зависимости от температуры (в диапазоне от 100 до 370°С). Каждому значению температуры, при которой вода находится в состоянии насыщения, соответствует давление ее насыщенного пара. При этих параметрах жидкость и ее пар находятся в состоянии насыщения или термодинамического равновесия.
В таблице даны следующие теплофизические свойства воды в состоянии насыщенной жидкости:
Другие свойства воды такие, как плотность, теплопроводность, удельная теплоемкость, температуропроводность при росте ее температуры имеют тенденцию к снижению своих значений. Например, плотность воды уменьшается с 958,4 до 450,5 кг/м 3 при нагревании со 100 до 370°С.
Теплопроводность воды в состоянии насыщения при увеличении температуры также снижается (в отличие от нормальных условий и температуре до 100°С, при которых имеет место ее рост в процессе нагрева). Снижение теплопроводности связано с увеличением как температуры, так и давления насыщенной жидкости.
Следует отметить, что удельная энтальпия воды в зависимости от температуры значительно увеличивается при нагревании, как до температуры кипения, так и выше.
Теплопроводность воды в зависимости от температуры при атмосферном давлении
В таблице представлены значения теплопроводности воды в жидком состоянии при нормальном атмосферном давлении. Теплопроводность воды указана в зависимости от температуры в интервале от 0 до 100°С.
Вода при нагревании становиться более теплопроводной — ее коэффициент теплопроводности увеличивается. Например, при 10°С вода имеет теплопроводность 0,574 Вт/(м·град), а при росте температуры до 95°С величина теплопроводности воды увеличивается до значения 0,682 Вт/(м·град).
t, °С | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 50 |
---|---|---|---|---|---|---|---|---|---|---|
λ, Вт/(м·град) | 0,569 | 0,572 | 0,574 | 0,587 | 0,599 | 0,609 | 0,618 | 0,627 | 0,635 | 0,648 |
t, °С | 55 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100 |
λ, Вт/(м·град) | 0,654 | 0,659 | 0,664 | 0,668 | 0,671 | 0,674 | 0,677 | 0,68 | 0,682 | 0,683 |
Теплопроводность воды в зависимости от температуры и давления
В таблице приведены значения теплопроводности воды и водяного пара при температурах от 0 до 700°С и давлении от 1 до 500 атм.
Как известно, вода при атмосферном давлении закипает и переходит в пар при температуре 100°С. Коэффициент теплопроводности воды в этих условиях равен 0,683 Вт/(м·град). При увеличении давления растет и температура кипения воды (закон Клапейрона — Клаузиуса). По данным таблицы видно, при давлении в 100 раз выше атмосферного (100 бар) вода находится в виде пара при температуре от 310°С и имеет теплопроводность 0,523 Вт/(м·град).
Таким образом, следует отметить, что изменение давления влияет как на температуру кипения воды, так и на величину ее теплопроводности. Высокая теплопроводность воды достигается за счет роста давления — при повышении давления коэффициент теплопроводности воды увеличивается. Например, при давлении 1 бар и температуре 20°С вода имеет теплопроводность, равную 0,603 Вт/(м·град). При росте давления до 500 бар теплопроводность воды становится равной 0,64 Вт/(м·град) при этой же температуре.