в чем измеряется относительная деформация
iSopromat.ru
Относительными называют деформации определяемые отношением изменения размера (абсолютной деформации) к соответствующим начальным размерам тела.
Другими словами относительные деформации показывают насколько изменился размер тела в сравнении с его размерами до нагружения.
Например, при растяжении (сжатии) прямого стержня его относительное удлинение ε находится отношением абсолютного удлинения Δl к начальной длине l0.
Здесь Δh – абсолютная поперечная деформация,
Δh0 – начальный поперечный размер (до деформации).
Измеряется в единицах или процентах [%]
При кручении — относительный угол закручивания
где, Δφ – угол закручивания участка вала,
l – длина рассматриваемого участка.
Единица измерения – радиан на метр [рад/м].
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
относительная деформация
Полезное
Смотреть что такое «относительная деформация» в других словарях:
относительная деформация — Отношение величины абсолютной деформации к исходному или конечному размеру деформир. тела в долях или процентах. [http://metaltrade.ru/abc/a.htm] Тематики металлургия в целом EN relative deformation … Справочник технического переводчика
относительная деформация — 3.1 относительная деформация (relative deformation) e: Отношение значения уменьшения толщины образца, измеренной по направлению действия сжимающей силы, к его первоначальной толщине d0, выраженное в процентах. Источник: ГОС … Словарь-справочник терминов нормативно-технической документации
относительная деформация — santykinė deformacija statusas T sritis fizika atitikmenys: angl. relative deformation vok. relative Deformation, f rus. относительная деформация, f pranc. déformation relative, f; déformation unitaire, f … Fizikos terminų žodynas
относительная деформация, % — 2.5 относительная деформация, %: Увеличение длины образца во время испытания к истинной расчетной длине. Источник: ГОСТ Р 53226 2008: Полотна нетканые. Методы определения прочности оригинал документа … Словарь-справочник терминов нормативно-технической документации
относительная деформация ползучести — ecc — [Англо русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011] Тематики строительные конструкции Синонимы ecc EN creep strain … Справочник технического переводчика
относительная деформация при максимальной нагрузке, % — 2.6 относительная деформация при максимальной нагрузке, %: Деформация, отмечаемая у образца при максимальной нагрузке. Источник: ГОСТ Р 53226 2008: Полотна нетканые. Методы определения прочности оригинал документа … Словарь-справочник терминов нормативно-технической документации
относительная деформация морозного пучения образца грунта — 3.3 относительная деформация морозного пучения образца грунта: Отношение абсолютной вертикальной деформации морозного пучения промерзающего грунта к мощности промерзшего слоя. Источник: ГОСТ 28622 2012: Грунты. Метод лабораторного определения… … Словарь-справочник терминов нормативно-технической документации
относительная деформация набухания без нагрузки — отношение увеличения высоты образца грунта после свободного набухания в условиях невозможности бокового расширения к начальной высоте образца природной влажности. (Смотри: ГОСТ 25100 95. Грунты. Классификация.) Источник: Дом: Строительная… … Строительный словарь
относительная деформация просадочности — отношение разности высот образцов, соответственно, природной влажности, и после их полного водонасыщения, при определенном давлении, к высоте образца природной влажности. (Смотри: ГОСТ 25100 95. Грунты. Классификация.) Источник: Дом: Строительная … Строительный словарь
ОТНОСИТЕЛЬНАЯ ДЕФОРМАЦИЯ ГРУНТА — отношение абсолютной величины деформации изучаемого образца грунта под внешней нагрузкой к первоначальным его размерам (до приложения нагрузки) … Словарь по гидрогеологии и инженерной геологии
В чем измеряется относительная деформация
В твердых телах – аморфных и кристаллических – частицы (молекулы, атомы, ионы) совершают тепловые колебания около положений равновесия, в которых энергия их взаимодействия минимальна. При увеличении расстояния между частицами возникают силы притяжения, а при уменьшении – силы отталкивания (см. §3.1). Силы взаимодействия между частицами обусловливают механические свойства твердых тел.
Деформация твердого тела является результатом изменения под действием внешних сил взаимного расположения частиц, из которых состоит тело, и расстояний между ними.
Существует несколько видов деформаций твердых тел. Некоторые из них представлены на рис. 3.7.1.
Отношение абсолютного удлинения к первоначальной длине образца называется относительным удлинением или относительной деформацией :
Если принять направление внешней силы, стремящейся удлинить образец, за положительное, то при деформации растяжения и – при сжатии. Отношение модуля внешней силы к площади сечения тела называется механическим напряжением :
За единицу механического напряжения в СИ принят паскаль (). Механическое напряжение измеряется в единицах давления.
Материалы, у которых разрушение происходит при деформациях, лишь незначительно превышающих область упругих деформаций, называются хрупкими (стекло, фарфор, чугун).
На рис. 3.7.1 (3) показана деформация всестороннего сжатия твердого тела, погруженного в жидкость. В этом случае механическое напряжение совпадает с давлением в жидкости. Относительная деформация определяется как отношение изменения объема к первоначальному объему тела. При малых деформациях
Величина модуля всестороннего сжатия определяет скорость звука в данном веществе (см. §2.7).
Содержание:
Деформация тела:
Вспомните ненастный день: дует порывистый ветер, гнутся деревья. Чем сильнее ветер, тем больше гнутся деревья. А вот физики говорят, что деревья деформируются. Когда ветер стихает, деревья возвращаются в свое первоначальное положение — деформация исчезает. Но если ветер достаточно сильный, то ветви деревьев и даже их стволы могут сломаться.
Виды деформации
Уже отмечалось, что результатом действия силы на тело может быть как изменение скорости движения тела, так и его деформация. Например, если толкнуть мячик, то он придет в движение, а некоторые его части при толчке сместятся относительно друг друга — мячик деформируется.
Деформация — изменение формы и (или) размеров тела. В зависимости от того, как именно части тела смещаются относительно друг друга, различают деформации растяжения, сжатия, изгиба, кручения, сдвига (см. таблицу).
Различия упругих и пластических деформаций
Возьмите эспандер (или ластик) и сожмите его — эспандер согнется. Но если прекратить сжимать эспандер, он полностью восстановит свою форму — деформация исчезнет (рис. 19.1). Деформации, которые полностью исчезают после прекращения действия на тело внешних сил, называют упругими.
Делая глиняную фигурку, мастер мнет руками комок глины, и глина сохранит форму, которую придаст ей мастер (рис. 19.2). Тяжелый пресс на монетном дворе чеканит монеты из металлических заготовок, — после прекращения действия пресса монета не восстановит свою прежнюю форму куска металла. И глина, и металл «не помнят» своей формы до деформации и не восстанавливают ее. Деформации, которые сохраняются после прекращения действия на тело внешних сил, называют пластическими. Попробуйте привести другие примеры упругих и пластических деформаций.
Определение силы упругости
При деформации всегда возникает сила, стремящаяся восстановить то состояние тела, в котором оно находилось до деформации. Эту силу называют силой упругости (рис. 19.3).
Сила упругости — это сила, которая возникает во время деформации тела и направлена в сторону, противоположную направлению смещения частей этого тела при деформации. Обычно силу упругости обозначают символом , но в некоторых случаях используют и другие символы. Если тело давит на опору, то опора деформируется (прогибается). Деформация опоры вызывает появление силы упругости, действующей на тело перпендикулярно поверхности опоры. Эту сила называют силой нормальной реакции опоры и обозначаются символом (рис. 19.4).
Если тело растягивает подвес (нить, жгут, шнур), то возникает сила упругости, направленная вдоль подвеса. Эту силу называют силой натяжения подвеса и обозначают символом (рис. 19.5).
Закон Гука
Научное исследование процессов растяжения и сжатия тел начал Роберт Гук (рис. 19.6) в XVII в. Результатом работы ученого стал закон, который позже получил название закон Гука: При малых упругих деформациях растяжения или сжатия сила упругости прямо пропорциональна удлинению тела и всегда пытается вернуть тело в недеформированное состояние: где — сила упругости; x — удлинение тела; k — коэффициент пропорциональности, который называют жесткостью тела.
Удлинение — это физическая величина, которая характеризует деформации растяжения и сжатия и равна изменению длины тела в результате деформации. Удлинение х определяется по формуле: где l — длина деформированного тела; — длина недеформированного тела (рис. 19.7). Жесткость тела можно определить, воспользовавшись законом Гука: Единица жесткости в СИ — ньютон на метр:
Жесткость — это характеристика тела, поэтому она не зависит ни от силы упругости, ни от удлинения. Жесткость зависит от формы и размеров тела, а также от материала, из которого тело изготовлено. Сила упругости прямо пропорциональна удлинению тела, поэтому график зависимости — прямая (рис. 19.8). Чем больше жесткость тела, тем выше расположен график. Воспользовавшись графиками на рис. 19.8, определите жесткость тел І–ІІІ и убедитесь в справедливости последнего утверждения.
Почему возникает сила упругости
Вы хорошо знаете, что все тела состоят из частиц (атомов, молекул, ионов). В твердых телах частицы колеблются около положений равновесия и взаимодействуют межмолекулярными силами притяжения и отталкивания. В положениях равновесия данные силы уравновешены. При деформации тела во взаимном расположении его частиц происходят изменения. Если расстояние между частицами увеличивается, то межмолекулярные силы притяжения становятся больше сил отталкивания. Если же частицы сближаются, то больше становятся межмолекулярные силы отталкивания. Другими словами: при деформации частицы «стремятся» вернуться в положение равновесия. Силы, возникающие при изменении положения одной частицы, очень малы. Но когда тело деформируется, изменяется взаимное расположение огромного количества частиц. В результате сложение сил дает заметную равнодействующую, которая противостоит деформации тела. Это и есть сила упругости. Итак, сила упругости — проявление действия межмолекулярных сил.
Приборы для измерения силы
Сила — это физическая величина, поэтому ее можно измерить. Приборы для измерения силы называют динамометрами. Основная составляющая простейших динамометров — пружина. Рассмотрим принцип действия таких динамометров на простом примере. Чтобы с помощью пружины, жесткость k которой известна, измерить силу F, с которой кот тянет тележку (рис. 19.9), необходимо:
1) измерить удлинение x пружины; 2) воспользовавшись законом Гука, определить силу упругости которая действует на кота со стороны пружины и по значению равна силе F тяги кота: Понятно, что каждый раз измерять удлинение пружины и рассчитывать силу неудобно. Поэтому пружину закрепляют на панели со шкалой, проградуированной в единицах силы. Именно так устроены простейшие школьные лабораторные динамометры (рис. 19.10). Существуют и другие виды пружинных динамометров (см., например, рис. 19.11).
Пример №1
Действуя на пружину силой 40 Н, мальчик растянул ее на 8 см. Определите жесткость пружины. Какую силу нужно приложить мальчику, чтобы растянуть эту пружину еще на 6 см? Деформацию пружины считайте малой упругой. Анализ физической проблемы. Сила, которую прикладывает мальчик, по значению равна силе упругости, возникающей при растяжении пружины: F= уFпр (рис. 19.12). Деформация является малой упругой, поэтому воспользуемся законом Гука. Задачу будем решать в единицах СИ.
,,
,
Решение:
1. Вычислим жесткость пружины:
поэтому
2. Найдем силу, которую нужно приложить мальчику, чтобы дополнительно растянуть пружину:
По условию ,поэтому следовательно,
Анализ результатов. Для удлинения пружины на 8 см мальчик прикладывал силу 40 Н; для удлинения пружины еще на 6 см ему нужно увеличить силу на 30 Н — это правдоподобный результат.
Ответ:
Пример №2
Выполняя экпериментальное задание, девочка увеличивала нагрузку на резиновый шнур. Каждый раз она измеряла силу, действующую на шнур, и соответствующее удлинение шнура. Воспользовавшись таблицей, составленной девочкой, постройте график уFпр(x). С помощью графика определите: 1) жесткость шнура; 2) удлинение шнура, когда к нему приложена сила 5 Н; 3) силу, которую нужно приложить к шнуру, чтобы его удлинение было равно 6 см.
Анализ физической проблемы. При растяжении шнура возникает сила упругости, которая по значению равна силе, действующей на шнур: Для построения графика зависимости начертим две взаимно перпендикулярных оси. На горизонтальной оси будем откладывать удлинение x шнура, а на вертикальной — соответствующее значение силы упругости
Решение:
Построив указанные в таблице точки (см. рисунок), увидим, что все они принадлежат одной прямой, значит, для любой точки графика имеем:
1) Выбрав точку А графика, найдем жесткость шнура:
2) Удлинение шнура в результате действия силы 5 Н найдем по графику: если
3) Силу, которую нужно приложить к шнуру, чтобы его удлинение было равно 0,06 м, найдем по закону Гука:
Ответ:
Итоги:
Деформацией называют изменение формы и (или) размеров тела. Если после прекращения действия на тело внешних сил деформация полностью исчезает, то это упругая деформация; если деформация сохраняется, то это пластическая деформация.
Сила упругости — это сила, которая возникает во время деформации тела и направлена в сторону, противоположную направлению смещения частей этого тела при деформации.
Сила упругости — проявление действия межмолекулярных сил. При малых упругих деформациях растяжения и сжатия выполняется закон Гука: сила упругости прямо пропорциональна удлинению тела и всегда пытается вернуть тело в недеформированное состояние: Приборы для измерения силы называют динамометрами. Простейшие из них — пружинные динамометры.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Деформация
Из Википедии — свободной энциклопедии
Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга за счет приложения усилия, при котором тело искажает свои формы. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.
Виды деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Обратимые деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе обратимых деформаций лежит смещение атомов тела от положения равновесия, в основе необратимых — необратимые перемещения атомов на расстояния от исходных положений равновесия (после снятия нагрузки происходит переориентация в новое равновесное положение). Деформация определяется как отношение изменения длины деформированного объекта к его начальной длине. Деформация не имеет физической размерности. Виды деформации: сдвиг, сжатие, смятие, изгиб, кручение, срез