в чем измеряется масса и вес в физике
Чем отличается вес от массы?
В современной науке вес и масса — разные понятия. Вес — сила, с которой тело действует на горизонтальную опору или вертикальный подвес. Масса же — мера инертности тела.
Масса измеряется в килограммах, а вес в ньютонах. Вес — это произведение массы на ускорение свободного падения (P = mg). Значение веса (при неизменной массе тела) пропорционально ускорению свободного падения, которое зависит от высоты над земной (или другой планеты) поверхностью. А если, еще точнее, то вес — это частное определение 2-го закона Ньютона — сила равна произведению массы на ускорение (F=ma). Поэтому его и вычисляют в Ньютонах, как все силы.
Масса — вещь постоянная, а вес, строго говоря, зависит, например, от высоты, на которой тело находится. Известно, что с увеличением высоты ускорение свободного падения падает, соответственно уменьшается и вес тела, при одних и тех же условиях измерения. Масса его остается постоянной.
Например, в условиях невесомости у всех тел вес равен нулю, а масса у каждого тела своя. И если в состоянии покоя тела показания весов будут нулевыми, то при ударе по весам тел с одинаковыми скоростями воздействие будет разным.
Интересно, что в результате суточного вращения Земли существует широтное уменьшение веса: на экваторе примерно на 0,3 % меньше, чем на полюсах.
И все же строгое различение понятий веса и массы принято в основном в физике, а во многих повседневных ситуациях слово «вес» продолжает использоваться, когда фактически речь идет о «массе». Кстати видя на товаре надписи: «масса нетто» и «масса брутто» не пугайтесь, НЕТТО — чистая масса продукта, а БРУТТО — масса с упаковкой.
Строго говоря, при походе на рынок, обращаясь к продавцу, следовало бы говорить: «Взвесьте, пожалуйста, килограммчик»…» или «Дайте ка 2 ньютона докторской колбасы». Конечно, термин «вес» уже прижился, как синоним термина «масса», но это не избавляет от необходимости понимать, что это вовсе не одно и то же.
Вес и масса: разница с точки зрения науки
Современным юным физикам и не только часто приходится сталкиваться с различными понятиями. Нередко возникает вопрос, в чем разница между массой и весом. Действительно, многие их путают и неверно употребляют в предложениях, хотя они обозначают не совсем одно и то же. Эти слова в некотором смысле являются синонимами. Так в чем разница веса и массы тела?
Общие понятия
Следует начать с определений интересующих нас слов. С точки зрения науки, вес – сила, с которой тело действует на опору, если она в горизонтальном положении, или подвес, если положение вертикальное. Масса же – физическая величина, измеряющая гравитационные и инертные свойства тел. Первая разница веса и массы в том, что вес измеряется в Ньютонах, а масса в килограммах, согласно международной системе единиц.
Вам будет интересно: Вопрошающий – это просьба или унижение?
В качестве примера, который поможет увидеть разницу двух понятий, можно привести даже человеческое тело. Если подпрыгнуть, то сразу же после отрыва от поверхности пола вес ваш будет стремительно уменьшаться вплоть до 0 (в самой верхней части траектории вы будете в невесомости, только этого не почувствуете). При этом масса ваша остается постоянной. Теперь вы знаете, как быстро сбросить вес.
Или же, например, вес космонавта на Земле был один, на Луне он бы уменьшился почти в 6 раз, а на других планетах увеличился в десятки раз. Но все это время его масса бы ни на грамм не изменилась.
Еще разница веса и массы в том, что первое понятие зависит от движения (скорости), а второе – нет.
Математическое выражение
Существует даже формула зависимости этих двух понятий, с помощью которой вес можно найти через массу и наоборот:
где P – вес, m – масса тела, g – ускорение свободного падения.
Также существует закон сохранения массы, который гласит, что какие бы процессы ни происходили, какие бы силы к телам ни прикладывались, их масса всегда остается постоянной.
Более того, так как вес является силой, то он имеет направление. Масса же – величина количественная, и ни о каком направлении здесь речи быть не может.
Разница массы и веса
Существенное отличие между этими понятиями заключается в том, что масса объекта остается постоянной, а вот вес может изменяться в зависимости от условий, например, он может зависеть от высоты, с которой тело падает вниз.
Также в состоянии невесомости вес предметов может быть равен нулю, в то время как их масса вовсе не нулевая и даже у каждого своя.
Интересно, что из-за повседневного вращения Земли вокруг своей оси в некоторых местах наблюдается уменьшение широтного веса.
Наше время
Сейчас люди практически не видят разницу массы и веса. Типичным примером этого является любая покупка в магазине, когда покупатель спрашивает у продавца информацию о весе продукта. С точки зрения науки, правильно было бы поинтересоваться его массой. Тем не менее на упаковках производитель указывает все как нужно.
Мы можем увидеть там такие надписи, как «масса нетто» (то есть масса чистого продукта) и «масса брутто» (масса продукта вместе с упаковкой). В результате этого масса и вес стали практически синонимами в потребительской сфере, и большинство людей искренне удивляются, когда кто-то пытается им доказать, что есть разница в массе и весе.
В настоящее время нет особых требований в том, чтобы каждый человек умел различать данные понятия. Скорее, это больше необходимо тем, кто занимается научной деятельностью.
Формула для измерения веса тела
Мы часто употребляем фразы наподобие: «Пачка конфет весит 250 грамм» или «я вешу 52 килограмма». Использование таких предложений происходит автоматический. Но что такое вес? Из чего он складывается и как его посчитать?
Для начала нужно понять, что неправильно говорить: «Этот предмет весит Х килограмм». В физике существует два разных понятия – масса и вес. Масса измеряется в килограммах, граммах, тонах и так далее, а вес тела рассчитывается в ньютонах. Поэтому, когда мы говорим, например, что мы весим 52 килограмма, мы на самом деле имеем в виду массу, а не вес.
Вес в физике
Масса – это мера инертности тела. Чем тело обладает большей инертностью, тем больше времени понадобится, чтобы придать ему скорость. Грубо говоря, чем выше значение массы, тем тяжелее сдвинуть предмет. В международной системе единиц массу измеряют в килограммах. Но её также измеряют и в других единицах, например;
Когда мы говорим один, два, три килограмма, мы сравниваем массу с эталонной массой (прообраз которой находится во Франции в МБМВ). Масса обозначается m.
Вес – это сила, которая действует на подвес или опору за счёт предмета, притягиваемого силой тяжести. Это векторная величина, а значит у него есть направление (как и у всех сил), в отличие от массы (скалярная величина). Направление всегда идёт в центр Земли (из-за силы тяжести). Например, если мы сидим на стуле, сиденье которого располагается параллельно Земле, то вектор силы направлен строго вниз. Вес обозначается P и рассчитывается в ньютонах [Н].
Если тело находится в движении или покое, то сила тяжести (Fтяж), действующая на тело, равна весу. Это справедливо, если движение происходит вдоль прямой линии относительно Земли, и оно имеет постоянную скорость. Вес действует на опору, а сила тяжести на само тело (которое располагается на опоре). Это разные величины, и независимо от того, что они равны в большинстве случаев, не стоит их путать.
Сила тяжести – это результат притяжения тела к земле, вес – воздействие тела на опору. Так как тело изгибает (деформирует) опору своим весом, возникает ещё одна сила, она называется сила упругости (Fупр). Третий закон Ньютона гласит, что тела взаимодействуют друг с другом с одинаковыми по модулю силами, но разными по вектору. Из этого следует, что для силы упругости должна быть противоположная сила, и эта она называется – сила реакции опоры и обозначается N.
Как измерить вес тела
Второй закон Ньютона гласит, что ускорение равно силе, делённой на массу. Таким образом, F=m*a. Так как Fтяж равна P (если тело находится в покое или движется по прямой (относительно Земли) с одинаковой скоростью), то и Р тела будет равняться произведению массы и ускорения (P=m*a).
Мы знаем, как найти массу, и знаем, что такое вес тела, осталось разобраться с ускорением. Ускорение – это физическая векторная величина, которая обозначает изменение скорости тела за единицу времени. Например, объект движется первую секунду со скоростью 4 м/с, а на второй секунде его скорость увеличивается до 8 м/с, значит, его ускорение равняется 2. По международной системе единиц ускорение рассчитывается в метрах на секунду в квадрате [м/с 2 ].
Если поместить тело в специальную среду, где будет отсутствовать сила сопротивления воздуха – вакуум, и убрать опору, то объект начнёт лететь равноускоренно. Название этого явления — ускорение свободного падения, которое обозначается g и рассчитывается в метрах на секунду в квадрате [м/с 2 ].
Интересно, что ускорение не зависит от массы тела, а значит если мы кинем листок бумажки и гирю на Земле в специальных условиях, при которых отсутствует воздух (вакуум), то эти предметы приземлятся в одно и то же время. Так как листок имеет большую площадь поверхности и относительно маленькую массу, то для того чтобы упасть, ему приходятся сталкиваться с большим сопротивлением воздуха. В вакууме такого не происходит, и поэтому перо, листок бумаги, гиря, пушечное ядро и другие предметы будут лететь с одной и той же скоростью и упадут в одно время (при условии, что они начнут лететь в одно и то же время, и их первоначальная скорость будет равняться нулю).
Таким образом, формула для расчёта веса телу будет выглядеть следующим образом P=m*g.
Примеры задач для расчёта веса тела
Первая задача. На стол положили груз массой 2 килограмма. Каков вес груза?
Эту задачу необходимо решать в следующей последовательности;
Видео
Масса и вес
Масса и вес — совокупность сведений, относительно взаимосвязей физических величин масса и вес тела.
Содержание
[править] Масса и вес в быту
В быту массу объекта или тела часто называют его весом, но с точки зрения науки эти понятия различны. [1]
[править] Масса и вес в физике
[править] Обзор
Масса — это мера инертности. Согласно законам Ньютона и выведенной физиком формуле, объект с массой m (один килограмм) будет ускоряться со скоростью один метр в секунду в квадрате [комм 1] при воздействии силы F один ньютон.
Инерцию можно рассмотреть на примере шара для боулинга. Пустим его горизонтально на ровную поверхность: таким образом заметим инерцию. А вот вес можно наблюдать, подняв шар над землей. Чтобы удержать шар, нужно прилагать силу, противостоящую весу. Вес шара для боулинга на Луне будет равен примерно [math]1/6[/math] от земного веса, а масса останется неизменной. Таким образом, если гравитация оказывает на какой-либо процесс незначительное влияние, то этот процесс в космосе будет проходить так же, как и на Земле. Например, бильярдные шары на бильярдном столе после удара разлетятся и отскочат с теми же скоростями, что и на Земле. А падать в лузы они будут медленнее.
В физике термины «масса» и «вес» значительно отличаются друг от друга, путать их нельзя. В повседневной жизни слова «вес» и «масса» — это синонимы. Например, если речь идёт о товарах и говорят про вес, то имеют в виду массу. А вот давление шин — это свойство, связанное именно с весом.
До конца XX века вес и масса различались не всегда. Поэтому иногда пишут, например, «молекулярный вес», а имеют в виду молекулярную массу.
Масса и вес имеют разные единицы измерения. В Международной системе единиц (СИ) килограмм — единица массы, а ньютон — силы (веса). Вне СИ килограмм используют и для веса. Аналогичные понятия есть и в неметрической системе мер.
[править] Измерение массы и веса
С весом можно производить вычисления точно так же, как и с любой другой силой.
[править] Вес на Земле
У объектов, расположенных на Земле, есть вес. Правда, иногда его трудно измерить. Примером такого «трудноизмеримого» объекта является предмет, плавающий в воде. Кажется, что он невесом, потому что поддерживается водой. Однако на самом деле он переносит свой вес на дно контейнера, там увеличивается давление.
Примером такого объекта является воздушный шар, содержащий гелий. Шар имеет массу. Может показаться, что у него нет веса (или вес отрицательный) Это связано с тем, что шар движется в воздушном пространстве. Однако на самом деле вес воздушного шарика и газа внутри него переносится на поверхность Земли, измерить этого вес невозможно.
Аналогичный пример — движение самолёта. Вес самолёта распределяется по земле, но не исчезает. Самолёт, находящийся в горизонтальном поле ничем не отличается от самолёта на взлётной полосе: просто его вес распределяется на большую площадь.
[править] Масса, гравитация и инерция
Более правильное определение массы в физике даётся с помощью инерции. Инерция — это свойство объекта, которое позволяет ему оставаться неподвижным после столкновения с другим объектом. А вот гравитационный вес — это сила, которая появляется, когда на массу действует гравитационное поле. При этом объект удерживается на поверхности планеты. [3]
[править] Преобразование массы в вес (на Земле)
Разницу между массой и весом чётко видят учёные и инженеры. Инженеры преобразуют массу объектов в вес. Для этого они умножают массу на коэффициент, равный 9,8 (более точного приближения, как правило, не требуется). Свойства материала, такие как модуль упругости, измеряются в ньютонах и паскалях (единица давления, связанная с ньютоном), но не в килограммах.
[править] Плавучесть и вес
Обычное соотношение между массой и весом — прямая пропорциональность. Однако оно нарушается вне Земли и в некоторых других случаях. Обычно мы считаем, что если масса объекта в сто раз больше, то и вес у него будет в 100 раз больше. Однако это не всегда так.
Рассмотрим воздушный шар. Когда такой шар полностью заполнен гелием, он обладает плавучестью, выталкивающая сила противостоит гравитации. Затем шарик становится нейтрально плавучим и может летать по дому на высоте 1-2 м. В таком случае можно заметить, что пока шар не сдвинуть, он будет стоять на месте. Кажется, что он невесом (но на самом деле его вес перераспределился на поверхность, поэтому его нельзя измерить).
При этом резина не меняет свою массу, она равна нескольким граммам.
Однако нужно отметить, что плавучесть не приводит к тому, что вес исчезает бесследно. Вместо этого вес ложится на поверхность (правда, измерить его в таком случае невозможно).
Так, если бы кто-то взвесил небольшой детский бассейн, в который кто-то вошел и начал бы в нём плавать, он обнаружил бы, что вес человека учтён весами. Плавающий объект будет весить меньше, однако вес лишь перераспределится на опору. Поскольку воздух — газ (а в данном случае газы обладают свойствами, похожими на свойства жидкости), подобные утверждения можно сделать и о воздухе. Значит, они справедливы и для Земли.
Эффект плавучести влияет не только на воздушные шарики. Так, воздух — это флюид, поэтому все частицы (размером больше, чем пылинки) оказывают определенное влияние на Землю. [комм 3]
Выталкивающая сила может противостоять силе тяжести. Однако следует понимать, что жидкость ничем не отличается от газов: вес никуда не пропадает, он просто переносится в другое место.
Масса «невесомых» (нейтрально плавучих) воздушных шариков заметить, массу больших воздушных шаров — проще. Воздушные шары легко поднимаются в воздух, однако сдвинуть их в горизонтальном направлении человеку не под силу.
Выталкивающая сила подчиняется закону Архимеда, который гласит, что она равна весу жидкости (газа), которую вытеснил объект. Если это воздух, то выталкивающая сила может быть небольшой
[править] Выталкивающая сила как проблема для измерительных приборов
При каждой калибровке весов необходимо учитывать влияние выталкивающей силы. Поэтому шкалу калибруют с учётом тех самых 150 ppm. Когда измеряют вес, измеряют его условную массу, настоящая масса остаётся неизвестной (так как она равна массе, из которой нужно вычесть неизвестное влияние выталкивающей силы. При некоторых подсчётах влияние выталкивающей силы могут не учитывать.
Сила тяжести, масса и вес тела, невесомость
Масса
Масса обозначается символом \(m \), является скалярной величиной и в СИ измеряется в килограммах.
Иногда массу в условии некоторых задач задают в граммах или, например, в тоннах. Чтобы перевести массу в килограммы, используют такие формулы:
\[ \large \boxed < \begin
От массы зависят инерционные и гравитационные свойства физических тел.
Масса в природе проявляет себя двумя способами. Поэтому, выделяют:
Инертная масса
Масса инертная влияет на способность тела двигаться по инерции. Такая масса используется в формуле второго закона Ньютона.
Пусть два тела находятся в инерциальной системе отсчета. Если какая-либо сила одинаково ускоряет эти тела, то они обладают одинаковой инертной массой. Здесь «одинаково ускоряет» следует понимать, как «сообщает одинаковые ускорения».
Гравитационная масса
Гравитационная масса определяет силу, с которой тело притягивается к другим телам. Эта масса используется в формуле закона всемирного тяготения.
Различные эксперименты показали, что инертная и гравитационная массы равны с высокой степенью точности. Поэтому, при изучении школьной физики можно просто говорить «масса», не уточняя, о какой именно массе идет речь.
Так же, масса входит в формулы для расчета импульса и механической энергии.
Массой обладают все макроскопические тела, а, так же, такие элементарные частицы, как протоны, нейтроны, электроны и т. д. Однако, существуют и частицы, у которых нет массы покоя, например – фотоны.
Примечание: Фотон – элементарная частица, переносчик электромагнитного взаимодействия, движется со скоростью света, часто проявляет волновые свойства. Подробнее о фотонах вы узнаете в основах квантовой физики.
Сила тяжести
Сила тяжести — это сила, с которой Земля притягивает к себе тело.
\(\large \vec
\(\large m \left(\text<кг>\right) \) — масса тела;
Вес – это сила. Этой силой тело давит на опору, когда опирается на нее, или растягивает подвес, когда на нем висит.
Является векторной величиной и обозначается символом \(\vec
\).
\(\vec
\left(H\right) \) – вес тела, как любая сила в СИ измеряется в Ньютонах.
Вес отличается от массы. Вес, как и любая сила, измеряется в Ньютонах, а масса измеряется в килограммах.
Когда тело опирается о горизонтальную поверхность, его вес равен по модулю силе реакции опоры по третьему закону Ньютона. Поэтому, в задачах для нахождения веса удобно вычислять силу \(\large \vec
Примечание: Векторы равны по модулю, когда обладают одинаковыми длинами. Так как длина вектора обозначается числом, то физики о равных по модулю векторах сил могут сказать: силы численно равны.
Чем вес отличается от силы тяжести
Вес — это сила, принадлежащая телу. А сила тяжести — это сила, действующая на тело со стороны планеты, или любого другого (крупного) тела.
Что такое невесомость
Подбросим мяч вверх и рассмотрим свободный полет мяча. Пока он в полете, он не давит на опору и не растягивает подвес. Проще говоря, мяч находится в невесомости – то есть, не имеет веса.
Масса есть всегда, а вес может отсутствовать! Как убедимся чуть позже, одна и та же масса может обладать различным весом.
Как изменяется вес тела лифте
Давайте выясним, какой вес имеет тело, находящееся в покоящемся лифте, или в лифте, который будет двигаться вверх или вниз с ускорением, или без него.
Если скорость лифта не изменяется
Сначала рассмотрим покоящийся лифт (рис. 1а), либо движущийся вверх (рис. 1б), или вниз (рис. 1в) с неизменной скоростью.
Примечание: «неизменной», также, значит «постоянной», или «одной и той же».
По первому закону Ньютона, когда действие других тел скомпенсировано, тело, не меняющее свою скорость, находится в инерциальной системе отсчета.
Как видно из рисунка, взаимодействуют два объекта: тело и опора. Тело давит своим весом на опору, а опора отвечает телу (рис. 1) силой своей реакции.
Будем записывать для рассмотренных случаев рисунка 1 векторные силовые уравнения:
\[ \large N – m \cdot g = 0 \]
А в этой статье подробно и с объяснениями написано о том, как составлять силовые уравнения (ссылка).
Прибавив к обеим частям уравнения величину \( m \cdot \vec
По третьему закону Ньютона, вес тела и реакция опоры направлены противоположно и равны по модулю. Поэтому, найдя силу реакции опоры, мы автоматически находим вес тела.
Воспользуемся тем, что \( \left|\vec \right|\), получим То есть, вес тела в покоящемся лифте, или движущемся вверх или вниз с неизменной скоростью, будет равен \( mg \). Если вектор скорости лифта не изменяется ни по направлению, ни по модулю, лифт можно считать инерциальной системой отсчета. Теперь выясним, каким весом будет обладать тело в лифте, движущемся с ускорением (рис. 2). Примечание: Лифт, движущийся с ускорением, не является инерциальной системой отсчета. Читайте подробнее о инерциальных системах. Запишем силовые уравнения. Для рисунка 2а, уравнение выглядит так: \[ \large N – m \cdot g = m \cdot a \] А для рисунка 2б, так: \[ \large N – m \cdot g = — m \cdot a \] Прибавим теперь к обеим частям уравнений величину \( m \cdot g \), получим: \( \large N = m \cdot a + m \cdot g \) – для случая рис. 2а; \( \large N = — m \cdot a + m \cdot g \) – для рис. 2б; Вынесем массу за скобки \( \large N = m \cdot \left( a + g \right) \) – для рис. 2а; Учтем, что \( \left|\vec \right|\), окончательно запишем Для рисунка 2а — движение лифта вверх с ускорением: Вес тела в движущемся с ускорением вверх лифте, будет равен \( m \cdot \left( g + a \right) \), то есть, превышает величину \( m \cdot g \). Когда лифт движется вниз с ускорением (рис. 2б), вес тела, наоборот — уменьшается: Напомним, что вес в покоящемся, или движущемся вверх или вниз с неизменной скоростью лифте, в точности равен \( m \cdot g \). Вес тела в движущемся вниз с ускорением лифте, равен \( m \cdot \left( g — a \right) \), это меньше величины \( m \cdot g \). Значит, одна и та же масса может обладать разным весом, мало того, в некоторых случаях вес вообще может отсутствовать. Масса есть всегда, а вес может отсутствовать! Когда вес тела больше силы тяжести, говорят, что возникает перегрузка. \[ \large \boxed < P >m \cdot g >\] Когда говорят о перегрузке, принято сравнивать ускорение движения вверх с ускорением свободного падения \(\large \vec Например, при движении ракеты с ускорением вверх, космонавт может испытывать перегрузки до 7g. Это значит, что его вес увеличивается в 7 раз. Первый космонавт мира — Юрий Гагарин, упоминал о перегрузке: «…какая-то сила вдавливает меня в кресло все больше и больше. … трудно пошевелить рукой или ногой…». Подобным образом мы испытываем перегрузки в самолете во время взлета — эти перегрузки вдавливают нас в кресло. Правда, эти перегрузки значительно меньше, чем перегрузки летчиков — спортсменов, или военных, летчиков — космонавтов. Представители этих профессий тренируют свое тело для того, чтобы перегрузки легче переносить. \(P = m \cdot g \) — вес тела в покоящемся или движущемся вверх или вниз с постоянной скоростью лифте. \( P = m \cdot \left( g + a \right) \) — вес, когда лифт движется с ускорением вверх; \( P = m \cdot \left( g — a \right) \) — вес в движущемся вниз с ускорением; Если ускорение лифта при его движении вниз \( a = g \), наступит невесомость, вес тела исчезнет \( P = 0 \).Если скорость лифта изменяется
Что такое перегрузка
Подведем итоги