в чем измеряется индуктивное сопротивление

Переменный ток. Индуктивное сопротивление.

Индуктивное сопротивление в цепи переменного тока — это реактивная часть сопротивления, определяемая индуктивностью элементов цепи.

Считается, что элементы цепи, для которых средняя мощность переменного тока равна нулю, обладают реактивным сопротивлением (в отличие от обычного активного сопротивления R, на котором происходит выделение энергии).

Катушка индуктивности (соленоид) при отсутствии сопротивления R ее провода обладает только индуктивным сопротивлением.

Для определения формулы индуктивного сопротивления найдем ЭДС самоиндукции такой катушки в цепи переменного тока, меняющегося по гармоническому синусоидальному закону I = Imsinωt.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

ЭДС са­моиндукции катушки еi равна по величине и противоположна по направ­лению напряжению u на ее концах, взятому с обратным знаком:

Следовательно, колебания напряжения на катушке опережают колеба­ния силы тока на π/2.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Вследствие этого в среднем за период не происходит ни накопления, ни диссипации энергии в катушке. Дважды за период энергия накачивается внутрь катушки (это энергия магнитного по­ля) и дважды возвращается обратно источнику. Амплитуда силы тока равна:

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление.

Величина ωL = ХL и есть индуктивное сопротивление. Как и в случае с емкостным сопротивлением, индуктивное сопротивление XL, действующее значение силы тока и действующее значе­ние напряжения связаны соотношением, подобным закону Ома для цепи постоянного тока:

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление.

Индуктивное сопротивление зависит от частоты. Чем больше частота, тем больше индуктивное сопротивление, тем меньше ток.

Источник

Индуктивное сопротивление катушки

Так как самоиндукция препятствует всякому резкому изменению силы тока в цепи, то, следовательно, она представляет собой для переменного тока особого рода сопротивление, называемое индуктивным сопротивлением.

Чисто индуктивное сопротивление отличается от обычного (омического) сопротивления тем, что при прохождении через него переменного тока в нем не происходит потери мощности.

Под чисто индуктивным сопротивлением мы понимаем сопротивление, оказываемое переменному току катушкой, проводник которой не обладает вовсе омическим сопротивлением. В действительности же всякая катушка обладает некоторым омическим сопротивлением. Но если это сопротивление невелико по сравнению с индуктивным сопро¬тивлением, то им можно пренебречь.

При этом наблюдается следующее явление: в течение одной четверти периода, когда ток возрастает, магнитное поле потребляет энергию из цепи, а в течение следующей четверти периода, когда ток убывает, возвращает ее в цепь. Следовательно, в среднем за период в индуктивном сопротивлении мощность не затрачивается. Поэтому индуктивное сопротивление называется реактивным (прежде его неправильно называли безваттным).

Индуктивное сопротивление одной и той же катушки будет различным для токов различных частот. Чем выше частота переменного тока, тем большую роль играет индуктивность и тем больше будет индуктивное сопротивление данной катушки. Наоборот, чем ниже частота тока, тем индуктивное сопротивление катушки меньше. При частоте, равной нулю (установившийся постоянный ток), индуктивное сопротивление тоже равно нулю.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Рисунок 1. Зависимость индуктивного сопротивления катушки от частоты переменного тока. Реактивное сопротивление катушки возрастает с увеличением часторы тока.

Индуктивное сопротивление обозначается буквой XL и измеряется в омах.

Подсчет индуктивного сопротивления катушки для переменного тока данной частоты производится по формуле

XL=2π• f •L

где XL — индуктивное сопротивление в ом; f—частота переменного тока в гц; L — индуктивность катушки в гн

Как известно, величину 2π• f называют круговой частотой и обозначают буквой ω (омега). Поэтому приведенная выше формула может быть представлена так:

Отсюда следует, что для постоянного тока (ω = 0) индуктивное сопротивление равно нулю. Поэтому, когда, нужно пропустить по какой-либо цепи постоянный ток, задержав в то же время переменный, то в цепь включают последовательно катушку индуктивности.

Для преграждения пути токам низких звуковых частот ставят катушки с железным сердечником, так называемые дроссели низкой частоты, а для более высоких радиочастот — без железного сердечника, которые носят название дросселей высокой частоты.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Емкостное и индуктивное сопротивление в цепи

Разность потенциалов между точками электрической цепи порождает ток, который представляет собой упорядоченное движение электронов под действием электрополя. В том случае, когда напряжение постоянное, в цепи будет только активное сопротивление. Если же напряжение переменное, то появляется еще реактивное сопротивление, которое определяется индуктивностью и емкостью компонентов используемой схемы.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Виды сопротивления и их особенности

Если в цепи постоянное напряжение, то, зная её сопротивление, можно узнать силу тока при помощи закона Ома. Он говорит о том, что сила тока пропорциональна напряжению, которое является его причиной. Коэффициент пропорциональности представляет обычное сопротивление. Его принято называть активным.

Если напряжение является постоянным, то сопротивление будет только активным. Его значение определяет, сколько энергии электрического поля преобразовано в тепло, то есть, безвозвратно утрачено. Поэтому при работе с кабелями СИП-3 1×50, СИП-2 3×70 и другими нужно помнить, что потери энергии из-за активного сопротивления могут быть значительными.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Более распространено использование переменного тока. Он возникает под воздействием напряжения, циклически изменяющегося по синусоидальному закону. Такой ток порождает реактивное сопротивление, которое дополняет действие активного. Существует две разновидности реактивного сопротивления различной природы — на основе индуктивности или емкости. Их отличительной особенностью является то, что они способствуют не трате электроэнергии, а преобразованию её в другую форму.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Нужно учитывать, что применение различных видов кабелей связано не только с наличием активного сопротивления, но и реактивного. Например, кабели СИП-3 1×50, СИП-2 3×70, АС-95 могут использоваться в электросетях и с активным, и индуктивным, и емкостным сопротивлениями.

Чтобы понять, что собой представляет индуктивное сопротивление, можно представить цепь, в которой имеется катушка, подключённая к источнику переменного тока. Как известно, напряжение меняется по синусоидальному закону. При этих изменениях катушка будет создавать магнитное поле, которое будет, в частности, влиять на текущий через него ток. Согласно природе магнитного поля, при уменьшении тока магнитное поле способствует его увеличению, а при усилении наблюдается противоположный эффект. Кроме того, цепь переменного тока с активным сопротивлением тратит энергию на выделение тепла.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

На практике речь идёт о действии индуктивного сопротивления, обеспечивающего сдвиг фазы между током и напряжением. Движение зарядов создаёт поле, которое в свою очередь препятствует изменению тока. Такое сопротивление присутствует не только в катушках, но и, например, при использовании кабеля СИП-2 3×70.

Емкостное сопротивление имеет другую природу. Для объяснения следует рассмотреть цепь, состоящую из источника переменного тока и конденсатора. Последний представляет собой деталь, в которой две поверхности параллельны друг другу и не имеют непосредственного электрического контакта.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

При использовании постоянного тока на обкладках конденсатора накапливаются заряды: на одной — положительный, а на второй — отрицательный. Электрополе за счет накопленного заряда представляет собой источник, противодействующий току. Поэтому конденсатор в цепи постоянного тока является бесконечно большим сопротивлением. Ток не проходит сквозь диэлектрик, разделяющий обкладки конденсатора.

В цепи переменного тока конденсатор циклически заряжается и разряжается, обеспечивая движение электрозарядов. Данный процесс в цепи переменного тока с активным и реактивным сопротивлением будет происходить с опозданием относительно синусоидального изменения напряжения. Таким образом, конденсатор представляет собой конечное сопротивление, получившее название емкостного.

Разница между емкостным и индуктивным сопротивлением заключается в том, что через индуктивную катушку постоянный ток протекает, а при использовании конденсатора пройти не может. Однако переменный ток в обеих цепях может течь без каких-либо проблем.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Полное сопротивление

На практике необходимо учитывать как активное, так и индуктивное и емкостное сопротивления. Это особенно важно при выборе компонентов для электрических сетей. Например, активное, емкостное и индуктивное сопротивления кабелей СИП-3 зависят от их номинального сечения. Поэтому при создании электролинии следует выбрать правильный диаметр проводника, чтобы в будущем не возникало аварийных ситуаций.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

При наличии нескольких разновидностей сопротивления возникает понятие полного сопротивления. Графически его представляют в виде прямоугольного треугольника. Длина одного его катета представляет величину активного сопротивления, а другого — разницу между значениями индуктивного и емкостного сопротивлений. Полное сопротивление в этом случае будет измеряться гипотенузой. В соответствии с теоремой Пифагора она определяется по следующей формуле:

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Пример использования

Если в сети необходимо регулировать силу тока, удобно использовать реостат (переменное сопротивление). При использовании этой детали, действие которой основано на омическом сопротивлении, можно видеть, как расходуется энергия на нагрев. Таким образом, его можно включать в цепь с активным сопротивлением и индуктивностью с целью регулировки обоих видов сопротивления.

Если вместо реостата используется катушка с изменяемыми параметрами, она позволяет легко произвести регулировку и при этом избежать нагрева. Такое решение особенно удобно, если используется электрическая цепь со значительным напряжением. Когда присутствует активное, емкостное и индуктивное сопротивление, регулировать можно любое из них.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

При использовании проводов или обычных радиодеталей в электрической цепи на самом деле измеряется и индуктивное, и ёмкостное сопротивления. Каждое из них зависит от частоты тока, а также от физических и геометрических особенностей используемых схем. Например, провод АС 50 или АС 70 может иметь индуктивное сопротивление в пределах 0.392–0.435 Ом/км. У А 50 аналогичная величина составляет от 0.297 до 0.468 Ом/км. Изолированный кабель АВБбШв 4х240 характеризируется величиной сопротивления всего 0.077 Ом/км.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

При выборе проводов необходимо учитывать особенности соответствующих марок. Например, в наименованиях АС 95, АС 120 и других цифра указывает толщину проводов, от которой зависят их электрические свойства. При работе с изолированными самонесущими кабелями СИП-2 3×70, СИП-3 1×50, СИП-3 1×70, СИП-3 1×95, СИП-3 1×120 нужно помнить, что их характеристики зависят не только от физических показателей, но и от номинального напряжения.

Видео по теме

Источник

Индуктивное сопротивление

В радиотехнике часто приходится сталкиваться с индуктивным сопротивлением. Его источником являются катушки. Они представляют собой двухполюсник, намотанный медным эмалированным проводом (обычно это ПЭТВ) на ферритовый или железный сердечник. Подобные детали встречаются в широком перечне оборудования: от древних советских радиоприёмников до материнских плат ПК последних моделей.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Формулы, зависимости и виды индуктивности

Электрическая индуктивность L – это величина, равная коэффициенту пропорциональности между током I, протекающим в замкнутом контуре, и создаваемым им магнитным потоком, иначе называемым потокосцеплением Y:

Если к выводам катушки на некоторое время приложить напряжение, то в ней начнёт протекать ток I и формироваться магнитное поле. Чем меньше индуктивность L, тем быстрее протекает данный процесс. В итоге рассматриваемый двухполюсник накопит некоторое количество потенциальной энергии. При отключении питания он будет стремиться её вернуть. В результате на выводах катушки образуется ЭДС самоиндукции E, которая многократно превышает изначально приложенное напряжение. Подобная технология ранее использовалась в магнето систем зажигания ДВС, а сейчас широко встречается в повышающих DC-DC преобразователях.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Катушка (она же – дроссель) – это радиодеталь с ярко выраженной индуктивностью, ведь именно для этого её и создавали. Однако подобным свойством обладают в принципе все элементы. Например, конденсатор, резистор, кабель, просто кусок провода и даже тело человек также имеют некоторую индуктивность. В расчетах ВЧ схем это обязательно принимается во внимание.

Важно! Проводя измерение индуктивности специализированным прибором, стоит помнить, что нельзя держаться руками за оба его вывода. В противном случае показания могут измениться и будут неверными. Вызвано это включением в измеряемую цепь тела человека с его собственной индуктивностью.

Сопротивление катушки переменному току

Гораздо интереснее дела обстоят с индуктивностью в контуре переменного тока. Любая катушка содержит в себе две составляющие сопротивления:

При постоянном токе учитывается только первый фактор, а при переменном – оба. Формула индуктивного сопротивления XL катушки имеет следующий вид:

Полное сопротивление катушки Z, называемое импедансом, определяется, исходя из активной R и индуктивной XL составляющих.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Важно! Если катушка установлена в печатную плату, то для проверки её следует отпаять. В таком случае индуктивность будет измеряться независимо от других компонентов, что существенно повысит точность показаний прибора.

Расчёт индуктивного сопротивления катушки

Любая индуктивность, в т.ч. катушка, оказывает переменному току некоторое сопротивление. Как его рассчитать, было описано выше. Из формулы XL=2pfL видно, что сопротивление дросселя в первую очередь зависит от частоты протекающего по нему тока и его индуктивности. При этом с обоими параметрами связь прямо пропорциональная.

Частота – это характеристика внешней среды, индуктивность катушки зависит от ряда её геометрических свойств:

Располагая вышеописанными формулами и информацией о материале и размерах катушки, можно достаточно точно прикинуть её индуктивное сопротивление без каких-либо измерительных приборов.

Дополнительная информация. Некоторые цифровые мультиметры имеют режим замера индуктивности. Подобная функция встречается редко, однако иногда оказывается очень полезной. Поэтому при выборе прибора стоит обратить внимание на то, способен ли он измерять индуктивность.

Где применяется катушка (дроссель, индуктивность)

Дроссели имеют примитивную конструкцию: просто намотанный витками на каком-либо сердечнике проводник. В то же время в таком приборе нечему ломаться. Также у дросселей широчайший функционал и десятки применений. Из всего этого следует, что в какой бы точке города ни находился человек, в радиусе 1 км от него всегда будут тысячи катушек индуктивности, настолько они распространены.

Катушка как электромагнит

Самое простое применение катушки – это электромагнит. С подобным применением каждый сталкивается, заходя в подъезд. Сила, удерживающая дверь на месте и препятствующая несанкционированному доступу чужака, берётся из электромагнита. Он находится сверху.

Электрический ток, проходя по виткам катушки, создаёт вокруг неё переменное электромагнитное поле. Оно возбуждает в металлическом «бруске», расположенном на двери, вихревые токи, которые так же создают магнитное поле. В результате получаются два управляемых магнита. Они притягиваются друг к другу. Тем самым дверь надёжно удерживается на месте.

Другое применение электромагнитов в быту – индукционные плиты. Катушка наводит в металлической посуде переменный высокочастотный ток. Он, в свою очередь, своим тепловым действием разогревает кастрюлю. В промышленности нечто подобное используется для разогрева и плавки металлов. Только в таком случае применяются на порядки более высокие мощности и другие частоты тока.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Индуктивность как фильтр

Импульсные блоки питания, электрические двигатели и диммеры для регулировки яркости ламп накаливания выбрасывают в сеть большое количество искажений и помех. Вызвано это неравномерностью потребляемого тока. Для борьбы с подобными сетевыми шумами применяются специальные фильтры на основе конденсаторов и дросселей.

Данный узел представляет собой небольшую катушку из медного эмалированного провода диаметром 0,2-2 мм. Обмотка наматывается на ферритовый сердечник. Чаще всего он изготовлен в форме кольца, немного реже встречаются так называемые «гантельки».

Подобные фильтры имеются в компьютерных блоках питания, компактных люминесцентных лампах (иногда не ставят, экономят), на выходах сварочных инверторов.

Также фильтр может быть звуковым. Его задача – срезать определённый диапазон частот. Индуктивные свойства этого прибора таковы, что он хорошо проводит низкие частоты, а высокие – приглушает. Поэтому дроссели используют для того, чтобы до динамиков дошёл только бас. По факту ослаблено будут слышны и другие частоты. Для более эффективной работы фильтра нужны дополнительные детали: конденсаторы и операционные усилители.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Катушка как источник ЭДС

Китайская промышленность удивила школьников 2000-х новой игрушкой – вечным фонариком. Его не нужно было заряжать. Фонарик работал от катушки индуктивности, около которой под действием движения рук перемещался магнит. Он наводил в обмотке переменную ЭДС, которая питала осветительный прибор.

Подобное явление объясняется законом электромагнитной индукции. Если проводник (рамка) находится в переменном электромагнитном поле, то в нём начинает наводиться электродвижущая сила. Иными словами, появляется напряжение.

Закон этот совсем неигрушечный, ведь он используется в работе генераторов на подавляющем большинстве электростанций, в том числе любые ТЭЦ, ГЭС, АЭС и ветряки. По подобному принципу работают динамомашины, питающие фары велотранспорта.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Две катушки – трансформатор

Ещё одно распространённое применение – это электрический трансформатор. Конструктивно он состоит из двух и более катушек, расположенных на одном железном или ферритовом сердечнике. Подобный агрегат работает только с переменным напряжением. Если на первичную обмотку подать ток, то он создаст в сердечнике магнитный поток. Он, в свою очередь, наведёт ЭДС во вторичной обмотке. Напряжения во входной и выходной катушках прямо зависят от количества их витков.

Таким образом, можно трансформировать 220 В из розетки в 12 В, необходимых для питания небольшой стереосистемы, или преобразовать 10 000 вольт в 220 для передачи от подстанции к жилым домам. Подобным методом можно добиться и повышения напряжения, т.е. превратить 12 В обратно в 220.

в чем измеряется индуктивное сопротивление. Смотреть фото в чем измеряется индуктивное сопротивление. Смотреть картинку в чем измеряется индуктивное сопротивление. Картинка про в чем измеряется индуктивное сопротивление. Фото в чем измеряется индуктивное сопротивление

Катушка индуктивности — элемент колебательного контура

Сейчас это уже редкость, но раньше для подстройки нужной радиостанции использовали колебательный контур. Он состоит из двух элементов, включенных параллельно: катушки индуктивности и переменного конденсатора. Работая в паре, они способны выделить из множества окружающих сигналов именно тот, который требуется. При попадании на антенну приёмника нужной частоты электромагнитных волн колебательный контур входит в резонанс. Процесс сопровождается лавинообразным увеличением ЭДС. Частота, на которой это происходит, зависит от индуктивности катушки и ёмкости конденсатора.

Катушка индуктивности – дроссель ДРЛ ламп

Несмотря на то, что освещение улиц и промышленных предприятий стремительно переходит на LED светильники, по СНГ всё ещё осталось огромное количество мест, где используются устаревшие дуговые ртутные люминесцентные лампы типа ДРЛ. Более всего они распространены в мелких городах и на второстепенных улицах. Их можно узнать по характерному холодно-белому свету и долгому розжигу.

ДРЛ лампы не способны работать без пускорегулирующего дросселя. Он обладает высоким индуктивным сопротивлением и призван ограничить пусковой ток осветительного прибора. Дроссели для ламп подбираются, исходя из их мощности. Наиболее распространённые номиналы – 250, 400 и 1000 Вт. Информация о мощности указывается на самом дросселе. Там же можно найти схемы включения.

Из вышесказанного можно подчеркнуть, что катушка индуктивности является консервативным и давно освоенным на практике электронным компонентом. Однако спрос на его применение по-прежнему не спадает. Поэтому знания, необходимые для расчета катушек и их правильного включения, необходимы каждому специалисту, имеющему дело с электроникой.

Видео

Источник

В чем измеряется индуктивное сопротивление

«ВВЕДЕНИЕ В ЭЛЕКТРОНИКУ»

Серия: «Учебники и учебные пособия»

Создание этой книги началось с написания обзора, который я завершил несколько лет назад. Тогда я рассмотрел около двадцати специальностей в электронной промышленности и попытался ответить на следующие вопросы:

1. Какой должна быть подготовка студентов, начинающих работать в области электроники после окончания учебного заведения?

2. Соответствуют ли цели и приоритеты используемых в настоящее время программ высшей школы по электронике изменениям в промышленности?

Исследование показало, что промышленности нужен выпускник по специальности «электроника», который сможет обнаружить неисправности, провести измерения с помощью различного тестирующего оборудования, особенно с помощью осциллографа, он должен уметь паять, знать, где найти информацию и ориентироваться в справочной литературе по электронике.

Я обнаружил также, что промышленность больше ценит в студентах способность делать, чем способность знать.

Короче говоря, я пришел к выводу, что обучению теории надо посвящать времени меньше, а практике — больше.

Второе издание Введения в электронику продолжает давать студентам основные знания по электронике, в которых нуждается промышленность. Текст книги тщательно проработан с целью сделать процесс обучения более легким и эффективным. Курс рассчитан на один год и сосредоточен на привитии исследовательских навыков, а не на обучении мастерству. Предполагается в первом семестре изучать цепи постоянного и переменного тока, во втором — полупроводники и линейные цепи, в третьем — цифровые устройства.

Ниже приведены некоторые основные особенности изложения материала:

• Главы книги очень короткие и посвящены узким вопросам.

• В начале каждой главы указаны цели обучения.

• Для улучшения восприятия материала в книге широко используются иллюстрации.

• В каждой главе имеются обзорные вопросы для того, чтобы студент мог проверить себя.

• Математика в книге используется только для записи основных формул.

• Частые примеры показывают, как использовать математические формулы.

• В резюме после каждой главы перечислены наиболее важные вопросы.

• Каждую главу завершают вопросы для самопроверки.

При разработке книги было сделано все, чтобы она отвечала потребностям как студентов, так и преподавателей.

Структура книги такова, что материал в ней изложен в логической последовательности. Однако, поскольку каждая глава является самостоятельной единицей, последовательность изложения материала студентам может изменяться в зависимости от стиля преподавания.

Я пригласил преподавателя математики для проверки точности всех примеров и ответов на вопросы самопроверки. Все примеры в книге подготовлены с помощью этого преподавателя. Благодаря такому подходу созданы примеры, которые помогут студенту связать математику, изучаемую на уроках математики, с математикой, используемой в электронике.

Поскольку в лаборатории студенты применяют изученную в классе теорию на практике, я разработал руководство по лабораторным работам, которое удовлетворяет требованиям промышленности. Честолюбивые проекты подкрепляют процесс обучения студентов и помогают им увидеть, как теория становится практикой.

Настоящий учебник и руководство по лабораторным работам помогут студентам расширить их знания в области электроники. Я включил путеводитель по учебному плану в Путеводитель Инструктора, который служит основой для программ но электронике. Этот учебный план используется в нашем школьном округе несколько лет и успешно себя зарекомендовал. Кроме того, путеводитель по учебному плану был представлен в Департамент Образования штата Нью-Йорк и одобрен там как один из вариантов технологических программ.

Мне хотелось бы поблагодарить двух людей, чья помощь и поддержка сделала переработку этой книги возможной: учителя математики Черил Сколэнд и преподавателя электроники Ролфа Тидеманна из Греческой Центральной Школы. Мне хотелось бы также выразить свою признательность представителям промышленности, которые продолжали оказывать мне поддержку, когда я нуждался в ней: Джералду Бассу, президенту EIC Electronics и Томасу Фегаделу, владельцу Glenwood Sales. Благодарю также многочисленных преподавателей, которые использовали текст книги на своих уроках и обратили мое внимание на неточности, указав, какие вопросы надо исключить или расширить.

Мне хотелось бы также поблагодарить рецензентов за их значительную поддержку: Джеймса Роунера из Ланкастерской профессиональной школы; Гэри А. Смита из Гротонской центральной школы, Рональда Дж. Фронковяка из Центра Образования Орлеан/Ниагара, Хоя Дж. Дэвиса из Высшей школы графства Вебстер и Джоэла Шнейда из Высшей Школы Восточного Виндзора.

И, наконец, я хотел бы поблагодарить мою жену Ширли, моих дочерей Кимберли и Сьюзен и моего сына Тимоти, которые поддерживали меня при создании этого текста.

Перечисленные ниже меры предосторожности не заменяют инструктаж, проводимый в классе или приведенный в руководстве по лабораторным работам. Если в какой-то момент у вас возникнет вопрос, что делать дальше, проконсультируйтесь с преподавателем.

ОБЩИЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ

Ввиду возможности получения травмы, опасности пожара и повреждения оборудования и материалов, при любых работах, связанных с электрическими и электронными цепями, должны соблюдаться следующие меры безопасности:

1. Выключите питание перед началом работы с цепью или оборудованием. Никогда не пренебрегайте безопасными соединительными устройствами. Никогда не предполагайте, что цепь выключена, проверьте это с помощью вольтметра.

2. Удаляйте и заменяйте предохранители только после отключения питания от цепи.

3. Убедитесь в том, что все оборудование правильно заземлено.

4. Проявляйте предельную осторожность при удалении или установке аккумуляторов, содержащих кислоту.

5. Используйте летучие очищающие жидкости только в хорошо проветриваемых помещениях.

6. Храните ветошь и другие легковоспламеняющиеся материалы в плотно закрытых металлических контейнерах.

7. В случае поражения электрическим током обесточьте цепь и немедленно доложите преподавателю.

МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С ВЫСОКИМ НАПРЯЖЕНИЕМ

По мере приобретения опыта в работе с электрическими цепями, люди, как это свойственно человеческой природе, становятся беспечными при выполнении рутинных операций. Многие части электрического оборудования используют опасные для жизни напряжения, которые могут оказаться смертельными при контакте с ними. При работе с высоковольтными цепями или вблизи них всегда следует соблюдать следующие меры предосторожности:

1. Обдумайте последствия каждого вашего действия. Нет абсолютно никаких причин считать, что вы не подвергнете опасности свою жизнь и жизни других.

2. Держитесь подальше от включенных цепей. Не работайте и не настраивайте цепи при включенном высоком напряжении.

3. Не работайте в одиночку. Всегда работайте в присутствии других лиц, способных оказать вам поддержку и первую помощь при несчастном случае.

4. Не нарушайте соединений.

5. Не заземляйтесь. Убедитесь в том, что вы не заземлены при проведении настроек или при использовании измерительных инструментов.

6. Никогда не включайте оборудование при повышенной влажности.

ЛИЧНЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ

Уделите время принятию мер предосторожности при работе с электрическими и электронными цепями. Не работайте с любыми цепями или оборудованием до тех пор, пока не будут соблюдены все меры безопасности.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *