в чем измеряется энергия газа
Термодинамика. Внутренняя энергия.
Внутреннюю энергию тела составляют кинетическая энергия всех его молекул и потенциальная энергия их взаимодействия.
Внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии. Рассмотрим взаимное превращение механической и внутренней энергий. Пусть на свинцовой плите лежит свинцовый шар. Поднимем его вверх и отпустим. Когда мы подняли шар, то сообщили ему потенциальную энергию. При падении шара она уменьшается, т. к. шар опускается все ниже и ниже. Но с увеличением скорости постепенно увеличивается кинетическая энергия шара. Происходит превращение потенциальной энергии шара в кинетическую. Но вот шар ударился о свинцовую плиту и остановился. И кинетическая, и потенциальная энергии его относительно плиты стали равными нулю. Рассматривая шар и плиту после удара, мы увидим, что их состояние изменилось: шар немного сплющился, и на плите образовалась небольшая вмятина; измерив же их температуру, мы обнаружим, что они нагрелись.
Нагрев означает увеличение средней кинетической энергии молекул тела. При деформации изменяется взаимное расположение частиц тела, поэтому изменяется и их потенциальная энергия.
Таким образом, можно утверждать, что в результате удара шара о плиту происходит превращение механической энергии, которой обладал в начале опыта шар, во внутреннюю энергию тела.
Нетрудно наблюдать и обратный переход внутренней энергии в механическую.
Например, если взять толстостенный стеклянный сосуд и накачать в него воздух через отверстие в пробке, то спустя какое-то время пробка из сосуда вылетит. В этот момент в сосуде образуется туман. Появление тумана означает, что воздух в сосуде стал холоднее и, следовательно, его внутренняя энергия уменьшилась. Объясняется это тем, что находившийся в сосуде сжатый воздух, выталкивая пробку (т. е. расширяясь), совершил работу за счет уменьшения своей внутренней энергии. Кинетическая энергия пробки увеличилась за счет внутренней энергии сжатого воздуха.
Таким образом, одним из способов изменения внутренней энергии тела является работа, совершаемая молекулами тела (или другими телами) над данным телом. Способом изменения внутренней энергии без совершения работы является теплопередача.
Поскольку молекулы идеального газа не взаимодействуют друг с другом, их потенциальная энергия считается равной нулю. Внутренняя энергия идеального газа определяется только кинетической энергией беспорядочного поступательного движения его молекул. Для ее вычисления нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что k NA = R, получим значение внутренней энергии идеального газа:
.
Внутренняя энергия идеального одноатомного газа прямо пропорциональна его температуре. Если воспользоваться уравнением Клапейрона-Менделеева, то выражение для внутренней энергии идеального газа можно представить в виде:
.
Следует отметить, что, согласно выражению для средней кинетической энергии одного атома и в силу хаотичности движения, на каждое из трех возможных направлений движения, или каждую степень свободы, по оси X, Y и Z приходится одинаковая энергия .
Число степеней свободы — это число возможных независимых направлений движения молекулы.
Газ, каждая молекула которого состоит из двух атомов, называется двухатомным. Каждый атом может двигаться по трем направлениям, поэтому общее число возможных направлений движения — 6. За счет связи между молекулами число степеней свободы уменьшается на одну, поэтому число степеней свободы для двухатомной молекулы равно пяти.
Средняя кинетическая энергия двухатомной молекулы равна . Соответственно внутренняя энергия идеального двухатомного газа равна:
.
Формулы для внутренней энергии идеального газа можно обобщить:
.
где i — число степеней свободы молекул газа (i = 3 для одноатомного и i = 5 для двухатомного газа).
Для идеальных газов внутренняя энергия зависит только от одного макроскопического параметра — температуры и не зависит от объема, т. к. потенциальная энергия равна нулю (объем определяет среднее расстояние между молекулами).
Для реальных газов потенциальная энергия не равна нулю. Поэтому внутренняя энергия в термодинамике в общем случае однозначно определяется параметрами, характеризующими состояние этих тел: объемом (V) и температурой (T).
Физика. 10 класс
§ 11. Термодинамическая система. Внутренняя энергия. Внутренняя энергия идеального одноатомного газа
Полную энергию физической системы можно представить как алгебраическую сумму её механической энергии и внутренних энергий тел, образующих систему. Убыль механической энергии системы в ряде случаев происходит при самопроизвольном переходе её части во внутреннюю энергию тел системы. Так, например, режущие инструменты заметно нагреваются при заточке. При скольжении конькобежца под коньками тает лёд, что обеспечивает хорошее скольжение. В этих примерах тела при трении нагреваются, и интенсивность теплового движения их молекул возрастает, что приводит к увеличению внутренней энергии тел. Как же определить внутреннюю энергию термодинамической системы? И что понимают под термодинамической системой?
Термодинамическая система. В термодинамике физические тела и их модели называют термодинамическими системами. Для их описания используют параметры системы, такие, как давление, объём, температура (макропараметры), а не физические характеристики молекул (микропараметры). Макропараметры можно непосредственно измерить, используя приборы, или выразить через другие величины, которые можно измерить на опыте. Мы рассмотрим простейшие термодинамические системы, состояние которых определяют, используя только давление, объём и температуру.
Тела, образующие термодинамическую систему, могут обмениваться с окружающей средой энергией, а также веществом. Если этого не происходит, то термодинамическую систему называют замкнутой или изолированной.
В одном случае газ находится в герметично закрытом теплонепроницаемом сосуде, а в другом — в стеклянной колбе. В каком случае газ как термодинамическая система является изолированным?
* Выводы термодинамики основаны на фундаментальных законах, называемых началами термодинамики. Эти законы установлены в результате обобщения многочисленных экспериментальных фактов. Опираясь на них, термодинамика позволяет делать определённые выводы о свойствах исследуемых систем, которые подтверждаются экспериментально. ↑
В чем измеряется энергия газа
Одним из важнейших понятий термодинамики является внутренняя энергия тела. Все макроскопические тела обладают энергией, заключенной внутри самих тел. С точки зрения молекулярно-кинетической теории внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом. В частности, внутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Отсюда вытекает закон Джоуля, подтверждаемый многочисленными экспериментами.
Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема |
Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:
Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия тела зависит наряду с температурой также и от объема :
. |
Работа численно равна площади под графиком процесса на диаграмме (). Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное. На рис. 3.8.2 изображены три различных процесса, переводящих газ из состояния (1) в состояние (2). Во всех трех случаях газ совершает различную работу.
Процессы, изображенные на рис. 3.8.2, можно провести и в обратном направлении; тогда работа просто изменит знак на противоположный. Процессы такого рода, которые можно проводить в обоих направлениях, называются обратимыми (см. §3.12).
Передача энергии от одного тела другому в форме тепла может происходить только при наличии разности температур между ними.
Количество теплоты является энергетической величиной. В СИ количество теплоты измеряется в единицах механической работы – джоулях ().
Внутренняя энергия вещества и способы ее изменения
теория по физике 🧲 термодинамика
Внутренняя энергия сосредоточена «внутри» вещества и складывается из потенциальной энергии взаимодействующих молекул (атомов) и кинетической энергии их движения:
∑ E k 0 — кинетическая энергия молекул (атомов), которая зависит от скорости их движения. Она изменяется только при изменении температуры. В процессе агрегатных переходов кинетическая энергия молекул остается неизменной.
∑ E p 0 — потенциальная энергия взаимодействия молекул, которая зависит от расстояния между ними. Она изменяется при изменении температуры и объема. Например, в процессе агрегатных переходов изменяется именно потенциальная энергия молекул.
Способы изменения внутренней энергии:
Виды теплопередачи
Выделяют три вида теплопередачи: теплопроводность, конфекцию и излучение.
Теплопроводность
Теплопроводность — способность тел переносить внутреннюю энергию без переноса вещества от более нагретых участков тела к более холодным.
При теплопроводности происходит постепенное увеличение скорости движения молекул. Это возможно только благодаря межмолекулярному взаимодействию. Поэтому теплопроводность в твердых телах происходит быстрее, чем в жидкостях. В газах она осуществляется еще медленнее. Для сохранения тепла используют пористые материалы, в которых много воздуха. Воздух — это смесь газов, поэтому он плохо переводит тепло.
Важно! В вакууме теплопроводность невозможна.
Конвекция
Конвекция — это перенос внутренней энергии, сопровождающийся переносом вещества.
При конвекции теплые слои жидкости или газа поднимаются, а холодные опускаются. Конвекция осуществляется только в жидкостях и газах.
Важно! В твердых телах и в вакууме конвекция невозможна.
Излучение
Излучение — это перенос теплоты в пространстве, осуществляемый в результате распространения электромагнитных волн, энергия которых при взаимодействии с веществом переходит в тепло.
Энергию излучают все нагретые тела. Чем больше нагрето тело, тем сильнее излучение. Теплопередача за счет излучения возможна в любой среде, в том числе и в вакууме.
Темные поверхности хорошо поглощают излучение, но быстро отдают энергию при охлаждении. Зеркальные и светлые поверхности отражают часть излучения и медленно остывают.
Количество теплоты
Количество теплоты Q (Дж) — физическая величина, которая показывает, на сколько изменяется внутренняя энергия вещества в процессе теплопередачи:
Если внутренняя энергия вещества увеличивается, то Q > 0. Это происходит при нагревании, плавлении и кипении.
Если внутренняя энергия вещества уменьшается, Q Формула теплоты при нагревании или охлаждении
При нагревании или охлаждении вещество получает (отдает) количество теплоты, определяемое по формуле:
Q = c m Δ t = c m ( t − t 0 )
∆t — изменение температуры вещества (в о С или К), t0— начальная температура вещества, t — конечная температура вещества, m — его масса (кг), c — удельная теплоемкость вещества (Дж/(кг∙К)).
Удельная теплоемкость вещества показывает, какое количество теплоты необходимо затратить, чтобы нагреть 1 кг вещества на 1 градус. Такое же количество теплоты выделится при охлаждении 1 кг этого вещества на 1 градус.
Внимание! Удельная теплоемкость вещества — табличная величина.
Количество теплоты также определяется формулой:
∆T — изменение температуры в Кельвинах, а C — теплоемкость вещества.
Теплоемкость вещества показывает, сколько теплоты поглощает тело при нагревании на 1 К. Измеряется в Дж/кг. Численно теплоемкость равна произведению массы вещества на его удельную теплоемкость:
Пример №1. Температура медного образца массой 100 г увеличилась на 40 о С. Какое количество теплоты получил образец? Удельная теплоемкость меди равна 380 Дж/(кг∙К).
Сгорание топлива
При сгорании топлива выделяется количество теплоты, определяемое формулой:
m — масса сгоревшего топлива (кг), q — удельная теплота сгорания топлива (Дж/кг).
Удельная теплота сгорания показывает, какое количество теплоты выделяется при полном сгорании 1 кг данного вида топлива.
Внимание! Удельная теплота сгорания — табличная величина.
Пример №2. Сгорело 5 сухих березовых поленьев. Каждый весил 1 кг. Определить, количество выделенной теплоты, если удельная теплота сгорания березовых дров составляет 15 МДж/кг.
Так как сгорело 5 поленьев по 1 кг, то всего сгорело 5 кг сухих березовых дров. Отсюда:
Q = q m = 5 · 15 · 10 9 = 75 · 10 9 ( Д ж ) = 75 ( М Д ж )
Алгоритм решения
Решение
Так как это твердые тела, поверхности которых соприкасаются друг с другом, и перенос тепла происходит без переноса вещества, то этот вид теплопередачи является теплопроводностью. Тепло всегда направлено от более нагретого тела к менее нагретому.
На рисунке видно, что самым нагретым телом является нижний брусок, так как он только отдает тепло, но не принимает его. Средний брусок справа менее нагрет, чем нижний, так как принимает от него тепло. Но он более теплый по сравнению со средним бруском слева, так как он делится с ним теплом. И оба этих бруска отдают свою энергию верхнему бруску, который сам только принимает тепло, но не отдает его. Следовательно, именно он имеет температуру +40 о С.
pазбирался: Алиса Никитина | обсудить разбор | оценить
Внутренняя энергия. Количество теплоты. Работа в термодинамике
Термодинамика опирается на общие закономерности тепловых процессов и свойств макроскопических систем. Выводы термодинамики эмпирические, то есть опираются на факты, проверенные опытным путем с использованием молекулярно-кинетической модели.
Для описания термодинамических процессов в системах, состоящих из большого числа частиц, используются величины, не применимые к отдельным молекулам и атомам: температура, давление, концентрация, объем, энтропия)
В термодинамике рассматриваются изолированные системы тел, находящиеся в термодинамическом равновесии. То есть в системах с прекращением всех наблюдаемых макроскопических процессов. Особую важность представляет свойство, которое получило название выравнивания температуры всех ее частей.
При внешнем воздействии на термодинамическую систему наблюдается переход в другое равновесное состояние. Он получил название термодинамического процесса. Когда время его протекания достаточно медленное, система приближена к состоянию равновесия. Процессы, состоящие из последовательности равновесных состояний, называют квазистатическими.
Внутренняя энергия. Формулы
Внутренняя энергия считается важнейшим понятием термодинамики. Макроскопические тела (системы) имеют внутреннюю энергию, состящую из энергии каждой молекулы. Исходя из молекулярно-кинетической теории, внутренняя энергия состоит из кинетической энергии атомов и молекул, а также потенциальной энергии их взаимодействия.
Например, внутренняя энергия идеального газа равняется сумме кинетических энергий частиц газа, которые находятся в непрерывном беспорядочном тепловом движении. После подтверждений большим количеством экспериментов, был получен закон Джоуля:
Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема.
Применение молекулярно-кинетической теории говорит о том, что выражение для определения внутренней энергии 1 м о л я одноатомного газа, с поступательными движениями молекул записывается как:
Зависимость от расстояния между молекулами у потенциальной энергии очевидна, поэтому внутренняя U и температура Т обусловлены изменениями V :
Определение внутренней энергии U производится с помощью наличия макроскопических параметров, характеризующих состояние тела. Изменение внутренней энергии происходит по причине действия на тело внешних сил, совершающих работу. Внутренняя энергия является функцией состояния системы.
Наличие знака перед работой говорит о работе газа в разных состояниях: положительная при расширении и отрицательная при сжатии. Переход из начального в конечное состояние работы газа может быть описан с помощью формулы:
A = ∑ p i d V i или в пределе при ∆ V i → 0 :
Рисунок 1. Работа газа при расширении.
Обратимые и необратимые процессы
Рисунок 2. Три различных пути перехода из состояния ( 1 ) в состояние ( 2 ) . Во всех трех случаях газ совершает разную работу, равную площади под графиком процесса.
Процессы из рисунка 2 возможно провести в обратном направлении. Тогда произойдет изменение знака А на противоположный.
Процессы, которые возможно проводить в обоих направлениях, получили название обратимых.
Жидкости и твердые тела могут незначительно изменять свой объем, поэтому при совершении работы разрешено им пренебречь. Но их внутренняя энергия подвергается изменениям посредствам совершения работы.
Процессы примеров не могут проводиться в противоположных направлениях, поэтому они получили название необратимых.
Рисунок 3. Упрощенная схема опыта Джоуля по определению механического эквивалента теплоты.
Изменение внутренней энергии возможно при наличии совершаемой работы и при теплообмене. Тепловой контакт тел позволяет увеличиваться энергии одного тела с уменьшением энергии другого. Иначе это называется тепловым потоком.
Количество теплоты
Рисунок 4. Модель работы газа.
Процесс передачи тепла тел возможен только при разности их температур.
Направление теплового потока всегда идет к холодному телу.