в чем измеряется электрический заряд в физике
Электрический заряд
Классическая электродинамика | ||||||||||||
Электричество · Магнетизм | ||||||||||||
| ||||||||||||
См. также: Портал:Физика |
Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.
Содержание
История
Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.
В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.
В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда
Электростатика
Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.
Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.
Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.
Взаимодействие зарядов
При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.
При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.
Закон сохранения электрического заряда
Электрический заряд замкнутой системы [5] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.
В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.
Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.
Свободные заряды
В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.
Измерение
Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.
Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.
Единицы измерения заряда. Закон Кулона
В результате долгих наблюдений учеными было установлено, что разноименно заряженные тела притягиваются, а одноименно заряженные наоборот – отталкиваются. Это значит, что между телами возникают силы взаимодействия. Французский физик Ш. Кулон опытным путем исследовал закономерности взаимодействия металлических шаров и установил, что сила взаимодействия между двумя точечными электрическими зарядами будет прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними:
Где k – коэффициент пропорциональности, зависящий от выбора единиц измерений физических величин, которые входят в формулу, а также и от среды, в которой находятся электрические заряды q1 и q2. r – расстояние между ними.
Отсюда можем сделать вывод, что закон Кулона будет справедлив только точечных зарядов, то есть для таких тел, размерами которых вполне можно пренебречь по сравнению с расстояниями между ними.
В векторной форме закон Кулона будет иметь вид:
Где q1 и q2 заряды, а r – радиус-вектор их соединяющий; r = |r|.
Силы, которые действуют на заряды, называют центральными. Они направлены по прямой, соединяющей эти заряды, причем сила, действующая со стороны заряда q2 на заряд q1, равна силе, действующей со стороны заряда q1 на заряд q2, и противоположна ей по знаку.
Для измерения электрических величин могут использоваться две системы счисления – система СИ (основная) и иногда могут использовать систему СГС.
В системе СИ одной из главных электрических величин является единица силы тока – ампер (А), то единица электрического заряда будет ее производной (выражается через единицу силы тока). Единицей определения заряда в СИ является кулон. 1 кулон (Кл) – это количество «электричества», проходящего через поперечное сечение проводника за 1 с при токе в 1 А, то есть 1 Кл = 1 А·с.
Коэффициент k в формуле 1а) в СИ принимается равным:
И закон Кулона можно будет записать в так называемой «рационализированной» форме:
Многие уравнения, описывающие магнитные и электрические явления, содержат множитель 4π. Однако, если данный множитель ввести в знаменатель закона Кулона, то он исчезнет из большинства формул магнетизма и электричества, которые очень часто применяют в практических расчетах. Такую форму записи уравнения называют рационализированной.
Величина ε0 в данной формуле – электрическая постоянная.
Основными единицами системы СГС являются механические единицы СГС (грамм, секунда, сантиметр). Новые основные единицы дополнительно к вышеперечисленным трем в системе СГС не вводятся. Коэффициент k в формуле (1) принимается равным единице и безразмерным. Соответственно закон Кулона в не рационализированной форме будет иметь вид:
Если r = 1см, а F = 1 дин, то из этой формулы следует, что в системе СГС за единицу заряда принимают точечный заряд, который (в вакууме) действует на равный ему заряд, удаленный от него на расстояние 1 см, с силой в 1 дин. Такая единица заряда называется абсолютной электростатической единицей количества электричества (заряда) и обозначается СГСq. Ее размерность:
Для вычисления величины ε0, сравним выражения для закона Кулона, записанные в системе СИ и СГС. Два точечных заряда по 1 Кл каждый, которые находятся на расстоянии 1 м друг от друга, будут взаимодействовать с силой (согласно формуле 3):
В СГС данная сила будет равна:
Сила взаимодействия между двумя заряженными частицами зависит от среды, в которой они находятся. Чтобы характеризовать электрические свойства различных, сред было введено понятие относительной диэлектрической проницательности ε.
Значение ε это различная величина для разных веществ – для сегнетоэлектриков ее значение лежит в пределах 200 – 100 000, для кристаллических веществ от 4 до 3000, для стекла от 3 до 20, для полярных жидкостей от 3 до 81, для неполярных жидкостей от 1,8 до 2,3; для газов от 1,0002 до 1,006.
Также от температуры окружающей среды зависит и диэлектрическая проницаемость (относительная).
Если учесть диэлектрическую проницаемость среды, в которую помещены заряды, в СИ закон Кулона примет вид:
Диэлектрическая проницаемость ε – величина безразмерная и она не зависит от выбора единиц измерения и для вакуума считается равной ε = 1. Тогда для вакуума закон Кулона примет вид:
Поделив выражение (6) на (5) получим:
Соответственно относительная диэлектрическая проницаемость ε показывает, во сколько раз сила взаимодействия между точечными зарядами в какой-то среде, которые находятся на расстоянии r друг относительно друга меньше, чем в вакууме, при том же расстоянии.
Для раздела электричества и магнетизма систему СГС иногда называют системой Гаусса. До появления системы СГС действовали системы СГСЭ (СГС электрическая) для измерения электрических величин и СГСМ (СГС магнитная) для измерения магнитных величин. В первой равной единице принималась электрическая постоянная ε0, а второй магнитная постоянная μ0.
В системе СГС формулы электростатики совпадают соответствующими формулами СГСЭ, а формулы магнетизма, при условии, что они содержат только магнитные величины – с соответствующими формулами в СГСМ.
Закон Кулона в системе СГС будет иметь вид:
Пример
На двух абсолютно идентичных каплях масла недостает по одному электрону. Силу ньютоновского притяжения уравновешивает сила кулоновского отталкивания. Нужно определить радиусы капель, если расстояния между ними значительно превышает их линейные размеры.
Решение
Поскольку расстояние между каплями r значительно больше их линейных размеров, то капли можно принять за точечные заряды, и тогда сила кулоновского отталкивания будет равна:
Где е – положительный заряд капли масла, равный заряду электрона.
Силу ньютоновского притяжения можно выразить формулой:
Где m – масса капли, а γ – гравитационная постоянная. Согласно условию задачи Fк = Fн, поэтому:
Что такое электрический заряд и каковы его свойства?
Научное обоснование многих электрических явлений стало возможным благодаря опытам Кулона, на основании которых учёный ввёл термин «точечный электрический заряд». Исследуя природу электризации, французский физик с помощью изобретённых им крутильных весов, открыл закон взаимодействия точечных зарядов, известный нам как закон Кулона.
Впоследствии этот основополагающий закон помог учёным сформировать представление о строении атомов, объяснить природу электричества. Это способствовало созданию источников электрического тока, без которого современного уровня научно-технического прогресса не удалось бы достигнуть.
История
На существование электрических зарядов обращали внимание мыслители ещё до нашей эры. Однако они не способны были объяснить их природу и, тем более, описать взаимодействие.
Прошло много веков до того момента, когда учёные вплотную занялись изучением электрических явлений, что и привело их к открытиям в данной области. В частности Уильям Гильберт ещё в XVI веке, не понимая природы электричества, называл наэлектризованными тела, которые притягивали другие вещества.
В 1729 году, наблюдая за электризацией различных тел, Шарль Дюфе пришёл к выводу о существовании зарядов двух видов, которые называл «стеклянными» (так как они проявляли себя на стеклянной палочке) и «смоляными» (возникающими при электризации смол). Позже Бенджамином Франклином понятия «стеклянные» и «смоляные» были заменены на более общие термины: «положительные» и «отрицательные». Данными терминами мы пользуемся по сегодняшний день.
Несмотря на то, что эти исследователи понимали факт распределения зарядов, они не смогли объяснить природу явления. Вплотную приблизился к пониманию элементарных частиц как носителей зарядов учёный-физик Ш. Кулон. Придуманный им термин «точечный заряд» помог учёному понять взаимодействие элементарных частиц, что привело его к открытию закона.
На основании своего открытия, физик уже мог объяснить причину взаимодействия точечных заряженных тел (см. рис. 1).
Дискретность (неделимость) элементарных заряженных частиц доказал Роберт Милликен. Учёный подтвердил, что заряженное тело содержит целое число элементарных частиц. Он пришёл к выводу, что делимость заряда имеет предел. Носителем элементарного заряда является электрон.
На рисунке 2 изображён опыт, подтверждающий делимость заряда. Опыт показывает, что деление кратно, это наталкивает на мысль о существовании элементарных частиц.
Рис. 2. Делимость заряда
Целостная картина сложилась после обнародования предложенной Резерфордом наглядной планетарной модели атома. Модель предполагает, что атом состоит из ядра, вокруг которого вращаются электроны. Это довольно упрощённая модель, но она уже объясняла многие электрические процессы, включая электризацию тел.
Рис. 3. Современная интерпретация планетарной модели атома
Что такое электрический заряд?
Данный термин обозначает то, что заряженное тело способно создавать электрическое поле. В более широком значении, зарядом называют количество электричества – скалярную величину, являющейся источником электромагнитного поля, участвующую в процессах электромагнитных взаимодействий. Электрический заряд не может существовать без носителя.
Элементарными носителями отрицательных зарядов являются электроны. Антиподом электрона является позитрон – устойчивая античастица, равная по массе электрону, но со знаком «+». Существует ещё одна устойчивая, положительно заряженная элементарная частица – протон.
Частицы, заряжены дробными частями (кварки), могут существовать только в составе адронов, поэтому их не считают носителями.
Заряженные протоны, из которых состоит ядро атома, тесно связаны ядерными силами. Они не могут свободно вырываться с ядра атома. Поэтому в качестве свободных носителей положительного заряда принято считать ион – атом, с орбиты которого удалился электрон. Образование отрицательных ионов происходит за счёт присоединения к ним свободных электронов.
Заряженность нейтральных атомов и молекул нулевая, а число положительных и отрицательных ионов в ячейках кристаллических решёток скомпенсировано. Поэтому тела в обычных условиях электростатически нейтральны. Между нейтральными атомами взаимодействие отсутствует.
Свойства
Установлено, что неподвижный заряд q неразрывно связан с электрическим полем, представителем особого вида материи. Поле является материальным носителем взаимодействия между элементарными частицами. Это свойство поля проявляется даже в случае отсутствия вещества между взаимодействующими телами.
Электрическое поле действует с силой F на пробный заряд q′, расположенный в любой точке поля.
характеризует действие электричества и называется напряженностью поля. Линии, касательные к которым совпадают с вектором напряжённости, образуют линии напряжённости. Густота линий напряжённости определяет величину напряжённости.
Линии напряженности электростатического поля точечного заряда представляют собой лучи, выходящие из одной точки (для положительного) или входящего в точку (для отрицательного) (см. рис. 4).
Рис. 4. Линии напряжённости поля
Электростатическое взаимодействие электромагнитных полей можно наблюдать на поведении заряженных шариков. Если эбонитовую или стеклянную палочку наэлектризовать трением и приблизить её к крохотным бузиновым шарикам, то мы увидим, как в результате силовых взаимодействий частицы отталкиваются (если они одинаковых знаков), либо притягиваются (разнознаковые).
Насыщение свободными носителями зарядов различных веществ не одинаково. Больше всего свободных электронов содержится в металлах. Поскольку заряженные электроны способны перемещаться под действием электрического поля, они являются основными транспортировщиками электрического тока в металлах. При этом движения электронов не приводит к каким-либо химическим изменениям.
Перенос зарядов в расплавленных солях или в растворах кислот осуществляется ионами. Они могут быть заряжены как положительно, так и отрицательно. В отличие от металлов, перераспределение зарядов в этих жидкостях сопровождается химическими реакциями. Поэтому растворы называют проводниками второго рода, то есть такими, которые под действием постоянных токов приводят к изменению химического состава вещества.
Таким образом, вещества условно подразделяют по типу проводимости:
Единица измерения
Единицей измерения заряда в международной системе СИ принято 1 кулон – совокупный заряд элементарных частиц, преодолевающих сечение проводника с током в 1 А, за единицу времени (секунду). Это огромная величина. Силу взаимодействия величиной в 1 Кл на расстоянии 1 м можно сравнить с действием гравитационного притяжения Землёй тела, массой 1 млн. т (9 × 10 9 Н).
Взаимодействие зарядов
Многочисленные опыты показали, что заряженные элементарные частицы взаимодействуют между собой. Носители одноименных зарядов отталкиваются, а носители разноименных зарядов – притягиваются (см.рис. 5).
Рис. 5. Взаимодействие элементарных частиц
Рис. 6. Интерпретация закона кулона
Закон сохранения электрического заряда
Экспериментально установлено, что в замкнутой системе выполняется один из основополагающих законов физики – закон сохранения. В изолированной системе суммарный заряд не исчезает, а сохраняется во времени. Кроме того, он квантуется, то есть изменяется порциями, кратными заряду элементарной частицы.
Алгебраическая сумма зарядов – величина постоянная: q1 + q2 + … + qn = const (см. рис. 7).
Рис. 7. Сохранение статического электричества
Закон сформулирован Б.Франклином (1747 г.) и подтверждён М. Фарадеем в 1843 г.
Способы измерения
Самый простой прибор для измерения – электроскоп. Он состоит из двух лепестков из фольги, расположенных на металлическом стержне. Конструкция накрыта стеклянным колпаком.
Если наэлектризованным телом прикоснуться к стержню, то лепестки наэлектризуются. Поскольку знаки на них одинаковые, то кулонова сила оттолкнёт их в разные стороны. По величине угла отклонения можно оценить величину статического электричества поступившего на лепестки.
Более сложный прибор – электрометр (схематическое изображение на рис. 8). Прибор состоит из стержня электрометра, стрелки и шкалы. Принцип действия аналогичен электроскопу (стрелка отталкивается от стержня). Благодаря наличию шкалы отклонение стрелки электрометра показывает количественную величину переданного электричества.
Рис. 8. Схематическое изображение электрометра
Мы уже упоминали, что Кулон в своих опытах пользовался крутильными весами. Этот измерительный прибор позволил учёному открыть знаменитый закон, названный в честь его имени.