в чем измеряется электрический поток
В чем измеряется электрический поток
Электрическим током (I) называется направленное движение электрических зарядов (ионов — в электролитах, электронов проводимости в металлах).
Необходимым условием для протекания электрического тока является замкнутость электрической цепи.
Электрический ток измеряется в амперах (А).
Производными единицами измерения тока являются:
1 килоампер (кА) = 1000 А;
1 миллиампер (мА) 0,001 А;
1 микроампер (мкА) = 0,000001 А.
Человек начинает ощущать проходящий через его тело ток в 0,005 А. Ток больше 0,05 А опасен для жизни человека.
Электрическим напряжением (U) называется разность потенциалов между двумя точками электрического поля.
Единицей разности электрических потенциалов является вольт (В).
1 В = (1 Вт) : (1 А).
Производными единицами измерения напряжения являются:
1 киловольт (кВ) = 1000 В;
1 милливольт (мВ) = 0,001 В;
1 микровольт (мкВ) = 0,00000 1 В.
Сопротивлением участка электрической цепи называется величина, зависящая от материала проводника, его длины и поперечного сечения.
Электрическое сопротивление измеряется в омах (Ом).
1 Ом = (1 В) : (1 А).
Производными единицами измерения сопротивления являются:
1 килоОм (кОм) = 1000 Ом;
1 мегаОм (МОм) = 1 000 000 Ом;
1 миллиОм (мОм) = 0,001 Ом;
1 микроОм (мкОм) = 0,00000 1 Ом.
Электрическое сопротивление тела человека в зависимости от ряда условий колеблется от 2000 до 10 000 Ом.
Удельным электрическим сопротивлением (ρ) называется сопротивление проволоки длиной 1 м и сечением 1 мм2 при температуре 20 °С.
Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью (γ).
Мощностью (Р) называется величина, характеризующая скорость, с которой происходит преобразование энергии, или скорость, с которой совершается работа.
Мощностью генератора называется величина, характеризующая скорость, с которой механическая или другая энергия преобразуется в генераторе в электрическую.
Мощностью потребителя называется величина, характеризующая скорость, с которой происходит преобразование электрической энергии в отдельных участках цепи в другие полезные виды энергии.
Системной единицей мощности в СИ является ватт (Вт). Он равен мощности, при которой за 1 секунду выполняется работа в 1 джоуль:
Производными единицами измерения электрической мощности являются:
1 киловатт (кВт) = 1000 Вт;
1 мегаватт (МВт) = 1000 кВт = 1 000 000 Вт;
1 милливатт (мВт) = 0,001 Вт; о1i
1 лошадиная сила (л. с.) = 736 Вт = 0,736 кВт.
Единицами измерения электрической энергии являются:
1 ватт-секунда (Вт сек) = 1 Дж = (1 Н) (1 м);
1 киловатт-час (кВт ч) = 3,б 106 Вт сек.
Пример. Ток, потребляемый электродвигателем, присоединенным к сети 220 В, составлял 10 А в течение 15 минут. Определить энергию, потребленную двигателем.
Вт*сек, или, разделив эту величину на 1000 и 3600, получим энергию в киловатт-часах:
W = 1980000/(1000*3600) = 0,55кВт*ч
Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.
Таблица физических величин и их описание:
Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.
Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.
Сила тока измеряется в амперах. 1А=1Кл/1c
В практике встречаются
Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).
1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.
В практике встречаются
Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.
1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.
Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:
R=ρlS – сопротивление такого проводника зависит от сечения S и длины l
где ρ – удельное сопротивление материала проводника, табличная величина.
Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.
Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.
Электрической емкостью называется способность проводника накапливать электрический заряд.
Емкость измеряется в фарадах (1Ф).
1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.
В практике встречаются
Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.
Индуктивность измеряется в генри.
1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.
Вектор электрической индукции
Вектором электрической индукции (электрического смещения) D → называют физическую величину, определяемую по системе С И :
Вектор электрического смещения в СНС определяется как:
Вектор индукции
Значение вектора D → не является только полевым, потому как он учитывает поляризованность среды. Имеется связь с объемной плотностью заряда, выражаемая соотношением:
Связь вектора напряженности и вектора электрического смещения
При наличии изотропной среды запись связи вектора напряженности и вектора электрического смещения запишется как:
Где ε – диэлектическая проницаемость среды.
Наличие D → способствует облегчению анализа поля при наличии диэлектрика. Используя теорему Остроградского-Гаусса в интегральном виде с диэлектриком, фиксируется как:
Проходя через границу разделов двух диэлектриков для нормальной составляющей, вектор D → может быть записан:
Формула тангенциальной составляющей:
Поле вектора D → изображается при помощи линий электрического смещения.
Определение направления и густоты идет аналогично линиям вектора напряженности. Но линии вектора электрической индукции начинаются и заканчиваются только на свободных зарядах.
Необходимо заполнить пространство между пластинами конденсатора однородным и изотропным диэлектриком. При наличии поля в конденсаторе диэлектрик поляризуется. Тогда начинают появляться связанные заряды с плотностью σ s υ на его поверхности. Создается дополнительное поле с напряженностью:
Векторы полей E → ‘ и E 1 → имеют противоположные направления, причем:
Запись результирующего поля с диэлектриком примет вид:
Формула плотности связанных зарядов:
Отсюда следует, что значение вектора электрической индукции в диэлектрике равняется:
Ответ: вектор электрической индукции не изменяется.
Была внесена пластина из диэлектрика с диэлектрической проницаемостью ε без свободных зарядов в зазор между разноименными заряженными пластинами. На рисунке 1 показана при помощи штриховой линии замкнутая поверхность. Определить поток электрической индукции Φ D через эту поверхность.
Рисунок 1 . Замкнутая поверхность
Формула записи потока вектора электрического смещения Φ D через замкнутую поверхность S :
Используя теорему Остроградского-Гаусса, можно сказать, что Φ D равняется суммарному свободному заряду, находящемуся внутри заданной поверхности. Из условия видно отсутствие свободных зарядов в диэлектрике и в имеющемся пространстве между пластинами конденсатора, а поток вектора индукции равняется нулю.
Рисунок 2 . Замкнутая поверхность с захватом части пластины изотропного диэлектрика
Из условия имеем, что поток вектора электрического смещения Φ D через замкнутую поверхность равняется нулю, то есть:
Если использовать теорему Остроградского-Гаусса, то значение Φ D – это суммарный свободный заряд, находящийся внутри заданной поверхности. Следует, что внутри такой поверхности отсутствуют свободные заряды:
Имеем, что поток вектора напряженности не равен нулю, но он считается как сумма свободных и связанных зарядов. Отсюда вывод – диэлектрик содержит связанный заряды.
Ответ: свободные заряды отсутствуют, а связанные есть, причем с положительной их суммой.
СОДЕРЖАНИЕ
Обзор
Электрический заряд, такой как одиночный электрон в космосе, окружен электрическим полем. В графической форме это электрическое поле показано точкой, зарядом, излучающим «линии потока». Они называются линиями Гаусса. Обратите внимание, что линии поля являются графической иллюстрацией напряженности и направления поля и не имеют физического значения. Плотность этих линий соответствует напряженности электрического поля, которую можно также назвать плотностью электрического потока: количество «линий» на единицу площади. Электрический поток пропорционален общему количеству силовых линий электрического поля, проходящих через поверхность. Для простоты расчетов часто удобно рассматривать поверхность, перпендикулярную силовым линиям. Если электрическое поле однородно, электрический поток, проходящий через поверхность с векторной площадью S, равен
Для неоднородного электрического поля электрический поток dΦ E через малую площадь поверхности d S определяется выражением
d Φ E знак равно E ⋅ d S <\ displaystyle <\ textrm >
Для замкнутой гауссовой поверхности электрический поток определяется как:
В то время как на электрический поток не влияют заряды, которые находятся вне замкнутой поверхности, на чистое электрическое поле E в уравнении закона Гаусса могут влиять заряды, которые лежат вне замкнутой поверхности. Хотя закон Гаусса справедлив для всех ситуаций, он наиболее полезен для расчетов «вручную», когда в электрическом поле существуют высокие степени симметрии. Примеры включают сферическую и цилиндрическую симметрию.
ЭЛЕКТРИЧЕСКИЙ ПОТОК
Смотреть что такое «ЭЛЕКТРИЧЕСКИЙ ПОТОК» в других словарях:
электрический поток — elektrinis srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. electric flux vok. elektrischer Fluss, m rus. поток вектора электрического смещения, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
электрический поток — elektrinis srautas statusas T sritis automatika atitikmenys: angl. electric flux vok. elektrischer Fluß, m rus. электрический поток, m pranc. flux électrique, m … Automatikos terminų žodynas
электрический поток — elektrinis srautas statusas T sritis fizika atitikmenys: angl. electric flux vok. elektrischer Fluß, m rus. электрический поток, m pranc. flux électrique, m … Fizikos terminų žodynas
поток вектора электрического смещения — elektrinis srautas statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. electric flux vok. elektrischer Fluss, m rus. поток вектора электрического смещения, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
Электрический заряд — q, Q Размерность T I … Википедия
Электрический лобзик — Электрический лобзик ручной электроинструмент для распиливания различных материалов. Содержание … Википедия
электрический ток — ▲ поток ↑ заряд электрический ток поток эфира; движение зарядов. проводники вещества, содержащие свободные заряженные частицы. электрическая цепь. омическое сопротивление. активное сопротивление. замыкание. ↓ электрод элемент цепи, подводящий… … Идеографический словарь русского языка
ЭЛЕКТРИЧЕСКИЙ ТОК — упорядоченное (направленное) движение электрически заряж. ч ц или заряж. макроскопич. тел. За направление тока принимают направление движения положительно заряж. ч ц; если ток создаётся отрицательно заряж. ч цами (напр., эл нами), то направление… … Физическая энциклопедия
ЭЛЕКТРИЧЕСКИЙ ТРАНСФОРМАТОР — электрическая машина, не имеющая подвижных частей и преобразующая переменный ток одного напряжения в переменный ток другого напряжения. В простейшем случае состоит из магнитопровода (сердечника) и расположенных на нем двух обмоток первичной и… … Большой Энциклопедический словарь
ЭЛЕКТРИЧЕСКИЙ ТОК — (обозначение I), движение ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ, обычно поток ЭЛЕКТРОНОВ по ПРОВОДНИКУ или ионов по ЭЛЕКТРОЛИТУ либо в газовой среде. Условлено считать, что ток движется от положительного конца цепи (АНОДА) к отрицательному (КАТОДУ), хотя на… … Научно-технический энциклопедический словарь
Закон электромагнитной индукции
Магнитный поток
Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.
Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.
Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.
Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).
Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.
Магнитным потоком через площадь S контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции B, площади поверхности S, пронизываемой данным потоком, и косинуса угла α между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):