в чем измеряется единица измерения электрической емкости

Что такое электрическая ёмкость?

Одним из важных параметров, учитываемых в электрических цепях, является электрическая емкость – способность проводников накапливать заряды. Понятие емкости применяется как для уединенного проводника, так и для системы, состоящей из двух и более проводников. В частности, емкостью обладают конденсаторы, состоящие из двух металлических пластин, разделенных диэлектриком или электролитом.

Для накопления зарядов широко применяютсяаккумуляторы, используемые в качестве источников постоянного тока для питания различных устройств. Количественной характеристикой, определяющей время работы аккумулятора, является его электроемкость.

Определение

Если диэлектрик, например, эбонитовую палочку, наэлектризовать трением то электрические заряды сконцентрируются в местах соприкосновения с электризующим материалом. При этом, другой конец палочки можно насытить зарядами противоположно знака и такая наэлектризованность будет сохраняться.

Совсем по-другому ведут себя проводники, помещенные электрическое поле. Заряды распределяются по их поверхности, образуя некий электрический потенциал. Если поверхность ровная, как у палочки, то заряды распределятся равномерно. Под действием внешнего электрического поля в проводнике происходит такое распределение электронов, чтобы внутри его сохранялся баланс взаимной компенсации негативных и позитивных зарядов.

Внешнее электрическое поле притягивает электроны на поверхность проводника, компенсируя при этом положительные заряды ионов. По отношению к проводнику имеет место электростатическая индукция, а заряды на его поверхности называются индуцированными. При этом на концах проводника плотность зарядов будет несколько выше.

На металлическом шаре заряды распределяются равномерно по всей поверхности. Наличие полости любой конфигурации абсолютно не влияет на процесс распределения.

Однако, если проводник убрать из зоны действия поля, то его заряды перераспределятся таким образом, что он снова станет электрически нейтральным.

На рисунке 1 изображена схема заряженного разнополюсного диэлектрика и проводника, удалённого из зоны действия электростатического поля. Благодаря тому, что диэлектрик сохраняет полученные заряды, уединенный проводник восстановил свою нейтральность.

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкостиРис. 1. Распределение зарядов

Интересное явление наблюдается с двумя проводниками, разделенными диэлектриком. Если одному из них сообщить положительный заряд, а другому – отрицательный, то после убирания источника электризации заряды на поверхности проводников сохранятся. Заряженные таким образом проводники обладают разностью потенциалов.

Заряды, накопившиеся на диэлектрике, уравновешивают внутренние взаимодействие в каждом из проводников, не позволяя им разрядиться. Величина заряда зависит от площади поверхности параллельных проводников и от свойства диэлектрика, расположенного между ними.

Свойство сохранять накопленный заряд называется электроемкостью. Точнее говоря, – это характеристика проводника, физическая величина определяющая меру его способности в накоплении электрического заряда.

Накопленное электричество можно снять с проводников путем короткого замыкания их или через нагрузку. С целью увеличения емкости на практике применяют параллельные пластины или же длинные полоски тонкой фольги, разделённой диэлектриком. Полоски сворачивают в тугой цилиндр для уменьшения объема. Такие конструкции называют конденсаторами.

На рисунке 2 изображена схема простейшего конденсатора с плоскими обкладками.

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкостиРис. 2. Схема простого конденсатора

Существуют конденсаторы других типов:

Важной характеристикой конденсатора, как и других накопительных систем, является его электрическая емкость.

Формулы

На рисунке 3 наглядно показано формулы для определения емкости, в т. ч. и для сферы.

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости Рис. 3. Электроёмкость проводника

По отношению к конденсатору, для определения его емкости применяют формулу: C = q/U. То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см. рис. 4).

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости Ёмкость конденсатора

О других способах определения ёмкости конденсатора читайте в нашей статье: https://www.asutpp.ru/kak-opredelit-emkost-kondensatora.html

Единицы измерения

За единицу измерения величины электроемкости принято фараду: 1 Ф = 1 Кл/1В. Поскольку фарада величина огромная, то для измерения емкости на практике она мало пригодна. Поэтому используют приставки:

Например, электрическая емкость 1 мкф = 0,000001 Ф. Параметр зависит от геометрических размеров, конфигурации проводника и материала диэлектрика.

Уединенный проводник и его емкость

Уединенным называют проводник, влиянием на который других элементов цепей можно пренебречь. Предполагается, что все другие проводники бесконечно удалены от него, а как известно, потенциал точки, бесконечно удаленной в пространстве, равен 0.

Электрическую емкость C уединенного проводника, определяют как количество электричества q, которое требуется для повышения электрического потенциала на 1 В: С = q/ϕ. Параметр не зависит от материала, из которого изготовлен проводник.

Конденсаторы постоянной и переменной емкости

Эра накопителей электричества началась с воздушных конденсаторов. Благодаря плоскому конденсатору с большой площадью обкладок физики смогли понять, как взаимная емкость регулируется площадями пластин, что позволило им создать конденсаторы с переменной емкостью (см. рис. 5).

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкостиРис. 5. Конденсатор переменной емкости

Идея изменения емкости состояла в том, чтобы путем поворота плоской обкладки изменять площадь поверхности, которая располагается напротив другой пластины. Если обкладки располагались точно друг против друга, то напряженность поля между ними была максимальной. При смещении одной из пластин на некоторый угол, напряженность уменьшалась, что приводило к изменению емкости. Таким образом, можно было плавно управлять накопительной способностью конденсатора.

Детали с переменной емкостью нашли применение в первых радиоприемниках для поиска частоты нужной станции. Данный принцип используется по сегодняшний день в различных аналоговых электрических схемах.

Большую популярность приобрели электролитические конденсаторы. В качестве одной из обкладок у них используется электролит, обладающий высокими показателями диэлектрической проницаемости. Благодаря диэлектрическим свойствам электролитов такие конденсаторы обладают большими емкостями.

Главные их преимущества электролитического конденсатора:

Недостатки:

Высокую электрическую прочность имеют плоские конденсаторы, у которых в качестве диэлектрического материала применяется керамика. Они используются в цепях с переменным током и выдерживают большие напряжения.

Сегодня промышленность поставляет на рынок множество конденсаторов различных типов, с высокими показателями проницаемости диэлектриков.

Аккумуляторы и электроемкость

Накопители электричества большой емкости (аккумуляторы) состоят из положительных и негативных пластин, погруженных в электролит. Во время зарядки часть атомов электролита распадается на ионы, которые оседают на пластине. Образуется разность потенциалов между пластинами, что является причиной возникновения ЭДС при подключении нагрузки.

С целью увеличения напряжения аккумуляторы последовательно соединяют в батареи. Разница потенциалов одной секции около 2 В. Для получения аккумулятора на 6 В необходимо создать батарею из трех секций, а на 12 В – батарею из 6 секций.

Для характеристики аккумуляторов (батарей) используются параметры:

Единицей емкости аккумулятора является ампер-час (А*ч) или кратные ей миллиампер-часы (мА*ч). Емкость аккумулятора зависит от площади пластин. Увеличить емкость можно путем параллельного подключения нескольких секций, но такой способ почти не применяется, так как проще и надежнее создать аккумулятор с большими пластинами.

Источник

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Общие сведения

Радиокомпоненты, накапливающие электрический заряд, получили широкое применение в различных электронных устройствах. Чтобы понять их принцип работы, необходимо рассмотреть физическую природу емкости, т. е. способность проводника накапливать заряженные частицы.

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Для ее демонстрации необходимо выполнить простейший опыт, который заключается в снятии шерстяного свитера. При этом возникает эффект статического (накопленного) электричества, поскольку электризуются тело и одежда. Чтобы разрядить их, необходимо предоставить выход для тока. Это достигается прикосновение к другому человеку или металлическому предмету. Опыт можно выполнить в темноте.

При этом будет виден разряд. Однако это не все, чем можно удивить начинающего радиолюбителя. Для начала следует понять физический смысл величины электроемкости.

Физический смысл

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Физический смысл электрической емкости заключается в способности тел накапливать электрозаряд под воздействием электромагнитного поля. Чтобы понять принцип его накапливания, необходимо привести более упрощенный пример — цистерну для воды. Если она пустая, то обладает только относительной или теоретической единицей объема.

По мере ее заполнения жидкостью появляется абсолютный (фактический) объем. Если цистерна имеет форму цилиндра, то он эквивалентен произведению площади поперечного сечения на высоту. Следовательно, при полном ее заполнении показатель емкости будет максимальным.

Далее нужно вернуться к обыкновенному проводнику. Под воздействием электромагнитного поля происходит заряд протонов и электронов. Последние начинают двигаться по физическому телу. Для демонстрации этого процесса нужно провести опыт, демонстрирующий накопление заряда. Для этого потребуются следующие компоненты:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

В этот момент между шарами будет образована разность потенциалов, которая приведет к генерации электромагнитного поля.

После отключения от источника питания между ними будет сохранен заряд. Он будет прямо пропорционален площади поперечного сечения электрода (шарика) и напряжению, а также обратно пропорционален расстоянию между шарами.

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Иными словами, при увеличении напряжения и уменьшении расстояния произойдет стремительный рост электромагнитной составляющей (напряженности). Кроме того, на шарах будут генерироваться отрицательный и положительный заряды. Если напряжение увеличить в два раза, то и заряд (обозначается литерой q) тоже увеличится в два раза.

Следует отметить, что q шаров еще зависит от среды между ними, т. е. сила взаимодействия (Fq) уменьшается или увеличивается. Например, если между шарами находится вакуум, то Fq будет иметь одно значение. Когда между элементами находится нейлон, то Fq увеличится ровно в три раза.

Далее нужно ознакомиться с единицей измерения емкости и соотношением для ее нахождения.

Единица измерения

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Характеристика тел способных проводить, накапливать и удерживать электрический заряд, измеряемая отношением величины заряда уединенного проводника к потенциалу, является электрической емкостью (обозначение литерой «С»). Ее можно найти по следующей формуле (математическая запись предыдущей формулировки): C=q/f, где q — заряд и f — потенциал.

Следует отметить, что соотношение позволяет установить единицу измерения емкости проводника, т. е. С= Кл/В. В международной системе она называется фарадой (Ф). Однако в электрических схемах такой показатель может просто вывести из строя радиокомпоненты, поскольку является очень большим. В этом случае применяются элементы со значительно меньшими величинами, т. е. мкФ (1 мкФ=10^(-6)Ф), нФ (1 нФ=10^(-9)Ф) и т. д.

Информация о конденсаторах

Конденсатор — радиодеталь, предназначенная для накопления электрической энергии. Они бывают двух видов:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Первые обладают постоянным значением электрической емкости, которая не изменяется с течением времени или в результате воздействия любого характера (механическое, термическое, электрическое). Как правило, при проектировании электрической цепи необходимо точно рассчитывать значение радиоэлемента.

Ко второй группе относятся устройства, обладающие переменной емкостной характеристикой. Регулировка осуществляется механическим или электрическим способом. В первом случае у конденсатора вынесена специальная ручка, предназначенная для уменьшения или увеличения емкостей. Они в основном применяются в радиоакустике для настройки контуров.

Последние представляют систему, состоящую из катушки индуктивности и переменного конденсатора.

Элементы с электронной регулировкой называются варисторами. Их емкость зависит от поданной на них величины напряжения. Однако конденсаторы по типу подключаемого тока также классифицируются на две группы. К ним относятся следующие:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Первые в основном выполняют роль фильтров, которые поглощают различные колебания волны переменного тока, влияющие пагубно на устройства. Кроме того, для компенсации полного импеданса в сети (совокупность активного и реактивного сопротивлений) иногда необходимо уменьшать значение емкостного сопротивления. Последнее негативно влияет на электродвигатели, трансформаторы и другие устройства, состоящие из элементов индуктивности.

Однако наиболее часто применяются конденсаторы электролитического типа. Это связано с тем, что практически вся аппаратура питается только постоянным током. Для накопления заряда необходимо использовать элементы для постоянного тока.

Следует отметить, что при их монтаже в электрическую схему необходимо строго соблюдать полярность. В противном случае радиоэлемент может взорваться. При этом может выйти из строя самые незащищенные и дорогостоящие элементы (транзисторы, симисторы, интегральные микросхемы и т. д. ).

Конструкция элемента

Конденсатор — радиоэлемент, состоящий из нескольких компонентов. К ним относятся следующие:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Корпус предназначен для защиты электродов от механических воздействий и электрических помех, влияющих на емкость. Кроме того, на него наносится специальная маркировка, по которой можно получить информацию о технических характеристиках устройства.

Для увеличения емкости два электрода изготавливаются из фольги. Последняя сматывается в виде цилиндра в два слоя, между которыми располагается диэлектрик — материал (прокладка), не пропускающий электроток. Для подключения в электрическую схему к электродам прикрепляются два вывода. Их называют «ножками».

Определение характеристик

Для использования конденсатора в цепи нужно знать его основные технические характеристики. К ним относятся следующие:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Первая является основной, поскольку этот радиоэлемент используется для накопления заряда. Однако устройства, рассчитанные на низкие токи и напряжения, могут выйти из строя при повышенном параметре емкости. Например, компьютерная техника. В ней все рассчитано, и малейшее превышение заряда может не открыть необходимый транзистор.

Последний нужен для кодирования информации в нули и единицы.

Однако не во всех устройствах пристального внимания заслуживает параметр емкости. Иногда ключевой момент представлен напряжением пробоя. Например, в блоках питания конденсаторы используются в качестве фильтрующих элементов. Проектировщики радиоаппаратуры используют только расчетные значения характеристик.

Например, со сглаживанием пульсаций тока после диодного моста легко справляется конденсатор емкостью 1000 мкФ и напряжением (U) 25 В. Однако допускается использовать радиодеталь с завышенными параметрами, т. е. С=2200 мкФ и U=50 В.

Этот подход улучшит схему, поскольку существенно «сгладит» пульсации, и не выйдет из строя при превышении величины напряжения пробоя.

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Однако не во всех случаях можно определить характеристики конденсатора. Иногда маркировка может быть стерта. Она может измеряться при помощи специального прибора — мультиметра. Однако в нем должна поддерживаться эта функция. Этот способ обладает существенным недостатком — им невозможно измерять радиокомпоненты большой емкости, поскольку кроны будет недостаточно для полной зарядки элемента (источник питания мультиметра — крона).

Таким образом, каждый проводник электрического тока обладает емкостной характеристикой, способной накапливать электрический заряд. На этом принципе построены конденсаторы, без которых не будет работать ни одна современная аппаратура.

Источник

Электрическая емкость

Сообщение электрического разряда проводнику называется электризацией. Чем больший заряд принял проводник, тем больше его электризация, или, иначе говоря, тем выше его электрический потенциал.

Между количеством электричества и потенциалом данного уединенного проводника существует линейная зависимость: отношение заряда проводника к его потенциалу есть величина постоянная:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Для какого-либо другого проводника отношение заряда к потенциалу есть также величина постоянная, но отличная от этого отношения для первого проводника.

Одной из причин, влияющих на эту разницу, являются размеры самого проводника. Один и тот же заряд, сообщенный различным проводникам, может создать различные потенциалы. Чтобы повысить потенциал какого-либо проводника на одну единицу потенциала, необходим определенный заряд.

Электрическая емкость и ее единица измерения

Свойство проводящих тел накапливать и удерживать электрический заряд, измеряемое отношением заряда уединенного проводника к его потенциалу, называется электрической емкостью, или просто емкостью, и обозначается буквой С.

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Приведенная формула электрической емкости позволяет установить единицу электрической емкости.

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Практически заряд измеряется в кулонах, потенциал в вольтах, а емкость в фарадах:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Емкостью в 1 фараду обладает проводник, которому сообщают заряд в 1 кулон и при этом потенциал проводника увеличивается на 1 вольт.

Единица измерения электрической емкости – фарада (обозначается ф или F) очень велика. Поэтому чаще пользуются более мелкими единицами – микрофарадой (мкф или μF), составляющей миллионную часть фарады:

и пикофарадой (пф), составляющей миллионную часть микрофарады:

Найдем выражение практической единицы – фарады в абсолютных единицах:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Электрический конденсатор

Устройство, предназначенное для накопления электрических зарядов, называется электрическим конденсатором.

Рисунок 1. Модель простейшего конденсатора

Конденсатор состоит из двух металлических пластин (обкладок), разделенных между собой слоем диэлектрика. Чтобы зарядить конденсатор, нужно его обкладки соединить с полюсами электрической машины. Разноименные заряды, скопившиеся на обкладках конденсатора, связаны между собой электрическим полем. Близко расположенные пластины конденсатора, влияя одна на другую, позволяют получить на обкладках большой электрический заряд при относительно невысокой разности потенциалов между обкладками. Электрическая емкость конденсатора есть отношение заряда конденсатора к разности потенциалов между его обкладками:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Как показывают измерения, емкость конденсатора увеличится, если увеличить поверхность обкладок или приблизить их одну к другой. На емкость конденсатора оказывает влияние также материал диэлектрика. Чем больше электрическая проницаемость диэлектрика, тем больше емкость конденсатора по сравнению с емкостью того же конденсатора, диэлектриком в котором служит пустота (воздух). Выбирая диэлектрик для конденсатора, нужно стремиться к тому, чтобы диэлектрик обладал большой электрической прочностью (хорошими изолирующими качествами). Плохой диэлектрик приводит к пробою его и разряду конденсатора. Несовершенный диэлектрик повлечет за собой утечку тока через него и постепенный разряд конденсатора.

Длинные линии передачи высокого напряжения можно рассматривать как своеобразные обкладки конденсатора. Емкость провода нужно рассматривать не только относительно другого провода, но также относительно земли, стен помещений и окружающих предметов. Значительной емкостью обладают подводные и подземные кабели ввиду близкого расположения токоведущих жил между собой.

Конденсатор постоянной емкости

Конденсаторы, емкость которых изменять нельзя, называются конденсаторами постоянной емкости.

Наиболее распространенные в настоящее время конденсаторы постоянной емкости состоят из очень тонких металлических (станиолевых) листов с парафинированной бумажной или слюдяной прослойкой между ними.

Для увеличения емкости (увеличения площади пластин конденсатора) чаще всего берут по нескольку станиолевых листов и соединяют их в две группы, входящие одна в другую и разделенные диэлектриком, как схематически показано на рисунке 2. Иногда также берут две длинные станиолевые пластины, прокладывают между ними и снаружи парафинированную бумагу и затем свертывают все в компактный пакет или трубку. Конденсаторы большой емкости во многих случаях помещают в металлическую коробку и заливают парафином.

Рисунок 3. Внешний вид современных конденсаторов постоянной емкости

Определим емкость плоского конденсатора. Возьмем произвольную замкнутую поверхность вокруг одной из пластин конденсатора. Тогда по теореме Гаусса поток вектора напряженности, проходящий через любую замкнутую поверхность, внутри которой находится электрический заряд, равен:

Предполагая, что поле конденсатора однородно (пренебрегая искажением поля у краев пластин), получаем напряженность электрического поля в конденсаторе:

где d – расстояние между пластинами или толщина диэлектрика. Подставив значение E из формулы (2) в формулу (1), получим:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

то выражение емкости плоского конденсатора примет вид:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

где S – площадь пластин в м²; d – толщина диэлектрика в м; ε – относительная электрическая проницаемость диэлектрика (диэлектрическая проницаемость).

Таким образом, для увеличения емкости плоского конденсатора нужно увеличить площадь его пластин (обкладок) S, уменьшить расстояние между ними d и в качестве диэлектрика поставить материал с большой относительной электрической проницаемостью (ε).

Видео об устройстве конденсатора постоянной емкости:

Конденсатор переменной емкости

Конденсаторы, емкость которых можно менять, называются конденсаторами переменной емкости.

Наиболее простой конденсатор переменной емкости имеет несколько (реже один) медных или алюминиевых полудисков, соединенных между собой электрически и укрепленных неподвижно. Другой ряд таких же полудисков собран на общей оси. При повороте этой оси каждый из укрепленных на ней полудисков входит меду двумя неподвижными полудисками. Поворачивая ось и меняя таким образом взаимное расположение подвижных и неподвижных полудисков, мы можем менять емкость конденсатора. На рисунке 3 показана схема устройства и на рисунке 4 – общий вид воздушного конденсатора переменной емкости.

Рисунок 3. Схема устройства конденсатора переменной емкости

Рисунок 4. Общий вид конденсатора переменной емкости

Видео об устройстве серийного конденсатора переменной емкости:

Видео о том, как можно сделать самодельный конденсатор переменной емкости своими руками:

Электролитические конденсаторы

В радиотехнике применяются также электролитические конденсаторы. Эти конденсаторы изготовляются двух типов: жидкостные и сухие. В обоих типах конденсаторов употребляется оксидированный алюминий. Путем специальной электрохимической обработки на поверхности алюминия получают тонкий (порядка нескольких десятков микрон) слой оксида алюминия Al2O3, представляющий так называемую оксидную изоляцию алюминия. Оксидная изоляция обладает электроизолирующими свойствами, а также является механически прочной, нагревостойкой, но гигроскопичной.

В жидкостных электролитических конденсаторах алюминиевую оксидированную пластину помещают внутрь металлического корпуса, который служит второй пластиной. В корпус заливают электролит, состоящий из раствора борной кислоты с некоторыми примесями.

Сухие электролитические конденсаторы изготовляют путем сворачивания трех лент. Одна лента представляет собой алюминиевую оксидированную фольгу (тонко раскатанный лист металла). Другой пластиной является лента из алюминиевой фольги. Между двумя металлическими лентами помещается бумажная или марлевая лента, пропитанная вязким электролитом. Плотно свернутые ленты помещаются в алюминиевый корпус и заливаются битумом. Тонкий оксидный изолирующий слой с высокой электрической проницаемостью (ε = 9) позволяет получить дешевые конденсаторы с большой удельной емкостью.

Видео об устройстве электролитического конденсатора:

Параллельное соединение конденсаторов

Когда емкость конденсатора мала, то соединяют несколько конденсаторов параллельно (рисунок 5).

При параллельном соединении конденсаторов напряжение на обкладках каждого конденсатора одно и то же. Поэтому можно написать:

Количество электричества (заряд) каждого конденсатора:

Общий заряд батареи конденсаторов:

Обозначая емкость батареи конденсаторов через C, получаем:

или окончательно формула емкости при параллельном соединении конденсаторов примет вид:

Следовательно, при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов. При параллельном соединении каждый конденсатор окажется включенным на полное напряжение сети.

Последовательное соединение конденсаторов

Рассмотрим последовательное соединение конденсаторов (рисунок 6).

Если левая обкладка первого конденсатора заряжена положительно (+), то вследствие электростатической индукции правая обкладка этого конденсатора получит отрицательный заряд (–), перешедший с левой обкладки второго конденсатора, которая сама зарядится положительно, и так далее. Значит, при последовательном соединении каждый конденсатор независимо от величины его емкости получит один и тот же заряд, то есть

Напряжение, приложенное ко всей батареи конденсаторов, равно сумме напряжений на обкладках каждого конденсатора:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

теперь можно написать

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

или, сокращая на q, получим окончательно, что емкость конденсаторов при последовательном соединении равна:

в чем измеряется единица измерения электрической емкости. Смотреть фото в чем измеряется единица измерения электрической емкости. Смотреть картинку в чем измеряется единица измерения электрической емкости. Картинка про в чем измеряется единица измерения электрической емкости. Фото в чем измеряется единица измерения электрической емкости

Таким образом, при последовательном соединении конденсаторов обратная величина общей емкости равна сумме обратных величин емкостей отдельных конденсаторов. Каждый из конденсаторов включен на меньшее напряжение, чем напряжение сети.

Конденсаторы широко применяются в радиотехнике, рентгенотехнике, высокочастотной промышленной электротехнике, для увеличения коэффициента мощности электроустановок и так далее.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *