в чем измеряется абсорбция
Коэффициент абсорбции
В этой статье речь пойдет о коэффициенте абсорбции, который свидетельствует о текущем состоянии гигроскопической изоляции электротехнического оборудования. Из статьи вы узнаете, что такое коэффициент абсорбции, для чего его измеряют, и какой физический принцип лежит в основе процесса измерения. Также скажем несколько слов о приборах, при помощи которых эти измерения производят.
«Правила устройства электроустановок» в пунктах с 1.8.13 по 1.8.16 и «Правила технической эксплуатации электроустановок потребителей» в приложении 3, сообщают нам, что обмотки двигателей, равно как и обмотки трансформаторов, после капитального или текущего ремонта, подвергаются обязательной проверке на значение коэффициента абсорбции. Эта проверка осуществляется в сроки планово-предупредительных работ по инициативе руководителя предприятия. Коэффициент абсорбции связан с увлажненностью изоляции, и соответственно свидетельствует о ее качестве в текущий момент.
В нормальном состоянии изоляции коэффициент абсорбции должен быть больше или равен 1,3. В случае, если изоляция сухая, коэффициент абсорбции окажется выше 1,4. Влажная изоляция имеет коэффициент абсорбции близкий к 1, это является сигналом к тому, что изоляцию следует высушить. Необходимо также помнить, что температура окружающей среды оказывает влияние на коэффициент абсорбции, и в момент испытаний ее температура должна быть в пределах от +10°С до +35°С. С ростом температуры коэффициент абсорбции уменьшится, а с понижением — увеличится.
Коэффициентом абсорбции называется коэффициент диэлектрического поглощения, определяющий увлажнённость изоляции, и позволяющий решить вопрос о том, нуждается ли гигроскопическая изоляция того или иного оборудования в сушке. Испытание заключается в измерении посредством мегомметра сопротивления изоляции через 15 секунд и через 60 секунд с момента начала проверки.
Сопротивление изоляции через 60 секунд — R60, сопротивление через 15 секунд — R15. Первое значение делится на второе, и получается значение коэффициента абсорбции.
Суть измерения в том, что электрическая изоляция характеризуется электроемкостью, и напряжение мегомметра, приложенное к изоляции, заряжает постепенно эту емкость, насыщая изоляцию, то есть возникает ток абсорбции между щупами мегомметра. Для проникновения тока в изоляцию требуется время, и это время тем больше, чем больше размер изоляции и чем выше ее качество. Чем выше качество, тем сильнее препятствует изоляция прохождению тока абсорбции при проведении измерений. Так, чем более увлажнена изоляция, тем коэффициент абсорбции меньше.
У сухой изоляции коэффициент абсорбции будет сильно больше единицы, поскольку ток абсорбции сначала резко устанавливается, затем постепенно снижается, и сопротивление изоляции через 60 секунд, которое покажет мегомметр, окажется больше примерно на 30%, чем оно было через 15 секунд с момента начала замера. Влажная же изоляция покажет коэффициент абсорбции близкий к 1, поскольку ток абсорбции, установившись, не сильно изменит свое значение спустя еще 45 секунд.
Новое оборудование не должно отличаться коэффициентом абсорбции от заводских данных более чем на 20% в сторону уменьшения, и его значение в диапазоне температур от +10°С до +35°С не должно быть меньше 1,3. Если условие не выполняется, оборудование необходимо сушить.
При необходимости измерить коэффициент абсорбции у силового трансформатора или мощного двигателя, применяют мегомметр на напряжение 250, 500, 1000 или 2500 В. Вспомогательные цепи измеряют мегомметром на напряжение 250 вольт. Оборудование с рабочим напряжением до 500 вольт — мегомметром на 500 вольт. Для оборудования с номинальным напряжением от 500 вольт до 1000 вольт применяют мегомметр на 1000 вольт. Если номинальное рабочее напряжение оборудования выше 1000 вольт, применяют мегомметр на 2500 вольт.
С момента подачи высокого напряжения от щупов измерительного прибора производят отсчет времени 15 и 60 секунд, и фиксируют значения сопротивления R15 и R60. Во время подключения измерительного прибора, оборудование, которое подвергается проверке, должно быть обязательно заземлено, а напряжение с его обмоток должно быть снято.
По окончании измерений следует подготовленным проводником разделить заряд с обмотки на корпус. Время разряда для обмоток с рабочим напряжением 3000 В и выше должно быть не менее 15 секунд для машин до 1000 кВт и не менее 60 секунд для машин мощностью больше 1000 кВт.
Для измерения коэффициента абсорбции обмоток машин между собой и между обмотками и корпусом, проводят поочередно измерения сопротивлений R15 и R60 для каждой из независимых цепей, а остальные цепи при этом соединяют между собой и с корпусом машины. Предварительно измеряют температуру цепи, подвергаемой проверке, она должна желательно соответствовать температуре при номинальном режиме работы машины, и не должна быть ниже 10°С, в противном случае обмотку следует прогреть прежде чем проводить замеры.
Значение наименьшего сопротивления изоляции R60 при рабочей температуре оборудования вычисляют по формуле: R60 = Uн / (1000 + Pн / 100), где Uн – номинальное напряжение обмотки в вольтах; Pн – номинальная мощность в киловаттах для машин постоянного тока или в киловольт-амперах для машин переменного тока. Ка = R60 / R15. Вообще, существуют таблицы, в которых указаны допустимые значения коэффициентов абсорбции для различного оборудования.
Надеемся, что наша краткая статья была для вас полезной, и теперь вы знаете, как и с какой целью необходимо измерять коэффициент абсорбции трансформаторов, электродвигателей, генераторов, и другого электротехнического оборудования, имеющего обмотки.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Абсорбция
Абсо́рбция (лат. absorptio от absorbere — поглощать) — поглощение сорбата всем объёмом сорбента. Является частным случаем сорбции.
В технике и химической технологии чаще всего встречается абсорбция (поглощение, растворение) газов жидкостями. Но известны и процессы абсорбции газов и жидкостей кристаллическими и аморфными телами (например, абсорбция водорода металлами, абсорбция низкомолекулярных жидкостей и газов цеолитами, абсорбция нефтепродуктов резинотехническими изделиями и т.п.).
Часто в процессе абсорбции происходит не только увеличение массы абсорбирующего материала, но и существенное увеличение его объема (набухание), а также изменение его физических характеристик – вплоть до агрегатного состояния.
На практике абсорбция чаще всего применяется для разделения смесей, состоящих из веществ, имеющих различную способность к поглощению подходящими абсорбентами. При этом целевыми продуктами могут быть как абсорбировавшиеся, так и не абсорбировавшиеся компоненты смесей.
Обычно в случае физической абсорбции абсорбировавшиеся вещества могут быть вновь извлечены из абсорбента посредством его нагревания, разбавления неабсорбирущей жидкостью или иными подходящими способами. Регенерация химически абсорбированных веществ также иногда возможна. Она может быть основана на химическом или термическом разложении продуктов химической абсорбции с высвобождением всех или некоторых из абсорбированных веществ. Но во многих случаях регенерация химически абсорбированных веществ и химических абсорбентов бывает невозможной или технологически/экономически нецелесообразной.
Следует отличать абсорбцию (поглощение в объёме) от адсорбции (поглощения в поверхностном слое). Из-за схожести написания и произношения, а также близости обозначаемых понятий эти термины часто путают.
Содержание
Виды абсорбции
Различают физическую абсорбцию и хемосорбцию.
При физической абсорбции процесс поглощения не сопровождается химической реакцией.
При хемосорбции абсорбируемый компонент вступает в химическую реакцию с веществом абсорбента.
Абсорбция газов
Всякое плотное тело сгущает довольно значительно прилегающие непосредственно к его поверхности частицы окружающего его газообразного вещества. Если такое тело пористо, как, например, древесный уголь или губчатая платина, то это уплотнение газов имеет место и по всей внутренней поверхности его пор, а тем самым, следовательно, и в гораздо более высокой степени. Вот наглядный пример этого: если взять кусок свежепрокалённого древесного угля, бросить его в бутылку, содержащую углекислый или другой газ, и закрыв её сейчас же пальцем, опустить отверстием вниз в ртутную ванну, то мы вскоре увидим, что ртуть поднимается и входит в бутылку; это прямо доказывает, что уголь поглотил углекислоту или иначе наступило уплотнение, абсорбция газа.
При всяком уплотнении выделяется тепло; поэтому, если уголь растереть в порошок, что, например, практикуется при фабрикации пороха, и оставить лежать в куче, то от происходящего здесь поглощения воздуха масса так нагревается, что может произойти самовоспламенение. На этом именно согревании, зависящем от абсорбции, основано устройство платиновой горелки Дёберейнера. Находящийся там кусок губчатой платины уплотняет так сильно кислород воздуха и направленную на него струю водорода, что сам постепенно начинает накаливаться и наконец воспламеняет водород. Вещества, которые абсорбируют — поглощают из воздуха водяной пар, сгущают его тоже в себе, образуя воду, и от этого становятся влажными, как, например, нечистая поваренная соль, поташ, хлористый кальций и т. п. Такие тела зовутся гигроскопическими.
Абсорбция газов пористыми телами была впервые замечена и изучена почти одновременно Фонтаном и Шееле в 1777 г., а затем подвергалось исследованию многими физиками, а особенно Соссюра в 1813 г. Последний, как на самых жадных поглотителей, указывает на буковый уголь и пемзу (морская пенка). Один объём такого угля при атмосферном давлении в 724 мил. поглотил 90 объёмов аммиака, 85 — хлористого водорода, 25 — углекислоты, 9,42 — кислорода; пемза при таком же сравнении оказала немного менее поглотительной способности, но во всяком случае это тоже один из лучших абсорбентов.
Чем легче газ сгущается в жидкость, тем сильнее он поглощается. При малом наружном давлении и при нагревании — уменьшается количество поглощаемого газа. Чем мельче поры поглотителя, т. е. чем он плотнее, тем большею, в общем, он обладает поглотительной способностью; слишком однако же мелкие поры, как например графита, не благоприятствуют абсорбции. Органически уголь поглощает не только газы, но и мелкие твёрдые и жидкие тела, а потому и употребляется для обесцвечивания сахара, очистки алкоголя и т. д. Вследствие абсорбции всякое плотное тело окружено слоем уплотнённых паров и газов. Эта причина, по Вайделю, может служить для объяснения открытого Мозером в 1842 г. любопытного явления так называемых потовых картин, то есть получаемых при дыхании на стекло. А именно, если приложить клише или какой-нибудь рельефный рисунок к полированной стеклянной плоскости, затем, отняв её, подышать на это место, то на стекле получается довольно точный снимок рисунка. Это происходит от того, что при лежании на стекле клише газы близ поверхности стекла распределились неравномерно, в зависимости от нанесённого на клише рельефного рисунка, а потому и водяные пары, при дыхании на это место, распределяются тоже в таком порядке, а охладившись и осев, и воспроизводят данный рисунок. Но если нагреть предварительно стекло или клише, и рассеять таким образом уплотнённый близ них слой газов, то уже таких потовых рисунков получить нельзя.
По закону Дальтона из смеси газов каждый газ растворяется в жидкости пропорционально своему парциальному давлению, вне зависимости от присутствия остальных газов. Степень растворения газов в жидкости определяется коэффициентом, показывающим, сколько объёмов газа поглощается в одном объёме жидкости при температуре газа 0° и давлении в 760 мм. Коэффициенты абсорбции для газов и воды вычисляются по формуле α = А + Вt + Ct², где α — искомый коэффициент, t — температура газа, А, В и С — постоянные коэффициенты, определяемые для каждого отдельного газа. По исследованиям Бунзена коэффициенты важнейших газов имеют такие
Газы | А | В | С | Действительны при t° |
---|---|---|---|---|
Сl | +3,0361 | -0,046196 | +0,0001107 | от 0° до 40° |
СО | +1,7967 | -0,07761 | +0,0016424 | от 0° до 20° |
О | +0,4115 | -0,00108986 | +0,000022563 | от 0° до 20° |
H2S | +4,3706 | -0,083687 | +0,0005213 | от 0° до 40° |
N | +0,020346 | 0,0000538873 | +0,000011156 | от 0° до 20° |
H | +0,0193 | — | — | от 0° до 20° |
Кроме твёрдых тел поглощать могут и жидкости, особенно если их смешать вместе в каком-нибудь сосуде. 1 объём воды может при 15 °C и 744 мил. давления растворить в себе, абсорбировать 1/50 объёма атмосферного воздуха, 1 объём углекислоты, 43 объёма сернистого газа и 727 объёмов аммиака. Объём газа, который при 0 °C и 760 мил. барометрического давления поглощается единицею объёма жидкости, называется коэффициентом поглощения газа для этой жидкости. Коэффициент этот для различных газов и различных жидкостей — различен. Чем выше наружное давление и ниже температура, тем больше растворяется в жидкости газа, тем больше коэффициент поглощения. Твёрдые и жидкие тела абсорбируют в данное время различные количества газов, а потому и можно вычислить количества поглощаемого газа для каждой отдельной жидкости. Изучение абсорбции газов жидкостями начато было Анри (1803) и затем двинуто дальше Соссюром (1813) и В. Бунзеном («Gasometrische Methoden», Брауншвейг, 1857, 2 изд., 1877). — Причина абсорбции состоит во взаимном притяжении молекул тел абсорбирующего и абсорбируемого.
См. также
Ссылки
Абсорбция на примере абсорбционной колонны на сайте «Горной энциклопедии».
Абсорбция
Из Википедии — свободной энциклопедии
Абсо́рбция (лат. absorptio от absorbere — поглощать) — поглощение сорбата всем объёмом сорбента. Является частным случаем сорбции.
Часто в процессе абсорбции происходит не только увеличение массы абсорбирующего материала, но и существенное увеличение его объёма (набухание), а также изменение его физических характеристик — вплоть до агрегатного состояния.
На практике абсорбция чаще всего применяется для разделения смесей, состоящих из веществ, имеющих различную способность к поглощению подходящими абсорбентами. При этом целевыми продуктами могут быть как абсорбировавшиеся, так и не абсорбировавшиеся компоненты смесей.
Обычно в случае физической абсорбции абсорбировавшиеся вещества могут быть вновь извлечены из абсорбента посредством его нагревания, разбавления неабсорбирущей жидкостью или иными подходящими способами. Регенерация химически абсорбированных веществ также иногда возможна. Она может быть основана на химическом или термическом разложении продуктов химической абсорбции с высвобождением всех или некоторых из абсорбированных веществ. Но во многих случаях регенерация химически абсорбированных веществ и химических абсорбентов бывает невозможной или технологически/экономически нецелесообразной.
Явления абсорбции широко распространены не только в промышленности, но и в природе (пример — набухание семян), а также в быту. При этом они могут приносить как пользу, так и вред (например, физическая абсорбция атмосферной влаги приводит к набуханию и последующему расслоению деревянных изделий, химическая абсорбция кислорода резиной — к потере ею эластичности и растрескиванию).
Следует отличать абсорбцию (поглощение в объёме) от адсорбции (поглощения в поверхностном слое). Из-за схожести написания и произношения, а также близости обозначаемых понятий, эти термины часто путают.
Норма коэффициента абсорбции трансформатора и как его измерить
Коэффициентом абсорбции изоляционного материала трансформатора называется соотношение сопротивления обмотки через минуту после начала измерений к сопротивлению через 15 секунд. Этот параметр позволяет определить уровень влажности и загрязненности изоляционного материала. Испытания проводятся для нового оборудования, после текущего и капитального ремонта.
Что такое абсорбция трансформатора, зачем этот показатель нужен
Абсорбцией называется поглощение одного вещества другим. В результате объем, вес, другие физические характеристики меняются. В трансформаторе абсорбция – это наполнение твердого изолятора влагой и другими примесями, снижающими эксплуатационные характеристики и сокращающими срок службы.
Уровень абсорбции силового преобразователя обязательно проверяется перед включением под напряжение после текущего и капитального ремонта. Полученные показатели позволяют определить не только уровень влажности, но и загрязнения, повреждения. Новое оборудование может проверяться с целью определить, можно ли его включать без предварительной сушки.
По сути это измерение сопротивления изоляции всех обмоток при пропускании через них напряжения. Каждое значение соответствует определенному состоянию изоляционного материала. Чем выше влажность и больше грязи, тем ниже сопротивление.
Как измерить абсорбцию
Для определения сопротивления требуются определенные условия. Температура среды должна быть от +10 до +35°С. Если показатель ниже, цифровое значение увеличивается, при повышении снижается.
Любой изоляционный материал имеет электрическую емкость. При подключении к напряжению в изоляционном материале образуются токи, насыщающие ее. Эти токи называются абсорбционными токами, время проникновения в материал зависит от качества и размеров.
Формула для расчета коэффициента абсорбции
Коэффициентом абсорбции называется показатель, определяющий уровень влажности изоляционного материала.
Формула для расчета простая:
где R60 – электросопротивление через 60 с после начала испытания;
R15 – электросопротивление через 15 с после начала испытания.
Допустимые значения при рабочей температуре можно узнать из специальных таблиц.
Схемы
Таблица
Измерение мегомметром
Для измерений используются мегомметры, на экране которых отображается коэффициент абсорбции через определенные интервалы времени. По умолчанию в этих приборах 3 интервала – через 15, 60 и 600 секунд. В большинстве современных мегомметров встроена функция установки других временных диапазонов.
Торговая сеть предлагает различные мегомметры (на 250, 500, 1000, 2500 В). Через их щупы проходит напряжение, фиксируются значения коэффициента через определенные интервалы времени. В стандартной ситуации сопротивление измеряется через 15 и 60 секунд после начала тестирования. Перед началом испытания преобразователь заземляется, с обмоток снимается напряжение.
Если необходимо измерить сопротивление между обмотками и корпусом или обмотками нескольких трансформаторов между собой, значение определяется для каждой независимой цепи (остальные соединяются между собой и с корпусом).
Обязательно измерение температуры: если она ниже +10 о С, обмотки прогреваются.
Норматив для изоляции
Значение коэффициента является показателем ресурса изоляционного материала. Это испытание занимает сравнительно много времени, позволяет определить характеристики тока, замедленного поляризацией. Различие показателей для сухой и влажной изоляции обусловлено различной продолжительностью заряда емкости материала.
Нормальная изоляция
Среднее нормативное значение абсорбционного коэффициента 1,3.
Если трансформатор новый, рассчитанный или измеренный показатель не должен быть ниже определенного производителем более чем на 20%. Если это условие не выполнено, оборудование требует сушки.
Сухая
Норма для неувлажненной обмотки K = 1,3-2,0. Ток в начале испытания резко повышается, потом снижается. Значение через 60 секунд отличается от показателя через 15 секунд примерно на 30% в сторону повышения.
Влажная
Если изоляция влажная, коэффициент имеет показатель, близкий к единице. Ток быстро устанавливается, в течение 45-и секунд меняется мало.
Значения электросопротивления для всех видов трансформаторов определены в ПУЭ (правилах устройства электроустановок):
Для трансформаторов до 1600 кВА испытания не обязательны.
Что такое коэффициент абсорбции трансформатора
Один из показателей, указывающих на состояние трансформаторов и его готовность к эксплуатации – коэффициент абсорбции. Рассмотрим понятие данной величины, порядок её определения и подсчёта, установленные нормы.
Для чего нужен коэффициент абсорбции
Абсорбция – процесс, при котором одно вещество поглощается другим, с изменением общей массы, объёма и прочих физических характеристик. Для трансформатора под абсорбцией понимают внутреннее увлажнение изолирующих материалов обмоток с проникновением в их состав влаги и посторонних примесей, содержащихся в воздухе.
В результате такого процесса изоляционные материалы теряют заданные свойства, вызывая опасность выхода из строя агрегата.
Как измерить
Коэффициент абсорбции трансформатора определяется в следующих ситуациях:
Учитывая, что ремонты производятся с частотой, установленной нормативными документами, периодичность измерения данного показателя определяется графиком проведения ремонтных работ.
Измерение уровня абсорбции состоит в обычном определении сопротивления изоляции. Для этого к силовой цепи агрегата на определённый период подключается электрический ток, с одновременным инструментальным измерением показателя сопротивления изоляции.
Для любого изоляционного материала характерно определённое значение электрической ёмкости. При работе оборудования покрытие насыщается токами, которые называют абсорбционными. Интенсивность такого насыщения и его продолжительность определяются качественными свойствами материала, толщиной покрытия и характеристиками тока.
Испытание проводят с использованием следующего подключения:
Для чистоты опыта, работы выполняют при температуре окружающей среды в диапазоне от 10 до 35 градусов выше нуля.
На рисунках ниже представлены схемы подключения и зависимость коэффициента абсорбции от температуры:
Для проведения измерений используют специальный прибор – мегаомметр. Измерения проводятся отдельно по каждой из обмоток, проверяется величина сопротивления между катушками и корпусом.
Если температура воздуха ниже плюс 10 градусов, требуется предварительное прогревание обмоток.
В зависимости от типа трансформатора, измерения проводятся для видов обмоток, указанных в таблице:
При проведении испытаний необходимо соблюдать следующие требования:
Проведение указанных испытаний не регламентируется для трансформаторов с мощностью, не превышающей 1600 кВА.
Как подсчитать
В ходе проведения испытаний определяются показатели сопротивления, используемые для расчёта значения коэффициента абсорбции. Расчёт выполняется по следующей формуле:
В результате расчёта с использованием замеренных данных, получают значение коэффициента абсорбции, который следует сравнить с нормируемой величиной.
Нормированные показатели
Определив значение данного показателя, можно установить ресурс изоляционной обмотки. Чем выше коэффициент, тем дольше прослужит изоляционное покрытие. Нормой считается величина в районе 1,3.
Фактические приведённые ниже значения указывают на следующее состояние изоляции:
Также для трансформаторов нормируются показатели сопротивления R60, в зависимости от мощности оборудования и температуры обмоток. Нормы проверяются по следующей таблице:
Для нового оборудования отклонение от значения, указанного производителем в паспортной документации, не должно превышать 20 процентов.
Если показатель агрегата ниже нормы, необходима дополнительная просушка оборудования, после чего процедуру измерения повторяют. При получении аналогичных данных после просушки, ресурс изоляционного покрытия исчерпан, а агрегат нуждается в ремонте.
Требования безопасности при проведении испытаний
Для обеспечения безопасности, требуется соблюдение следующих требований в ходе проведения данных испытаний:
Измерения должны проводиться специалистами аккредитованной лаборатории с использованием оборудования, прошедшего своевременную поверку.
Коэффициент абсорбции позволяет установить соответствие состояния изоляционного покрытия провода обмоток требованиям нормативных документов и обеспечить контроль работоспособности трансформаторов.