в чем исчисляется вероятность
Что такое вероятность и как ее посчитать
Пусть будет некий абстрактный эксперимент в процессе которого может происходить некое событие. Этот эксперимент провели пять раз, и в четырех из них происходило то самое событие. Какие выводы можно сделать из этих 4/5?
Есть формула Бернулли, которая дает ответ, с какой вероятностью происходит 4 из 5 при известной исходной вероятности. Но она не дает ответ, какая была исходная вероятность, если событий получилось 4 из 5. Оставим пока в стороне формулу Бернулли.
Сделаем маленькую простенькую программку, симулирующую процессы вероятностей для такого случая, и на основе результата вычислений построим график.
Код этой программы можно найти здесь, рядом же вспомогательные функции.
Полученный расчет закинул в эксель и сделал график.
Такой вариант графика можно назвать распределением плотности вероятностей значения вероятности. Его площадь равна единице, которая распределена в этом холмике.
Для полноты картины упомяну, что этот график соответствует графику по формуле Бернулли от параметра вероятность и умноженный на N+1 количества экспериментов.
Далее по тексту, там где в статье употребляю дробь вида k/n, то это не деление, это k событий из n экспериментов, чтобы каждый раз не писать k из n.
Далее. Можно увеличить количество экспериментов, и получить более узкую область расположения основных величин значения вероятность, но как бы их не увеличивали, эта область не сократится до нулевой области с точно известной вероятностью.
На графике ниже изображены распределения для величин 4/5, 7/9, 11/14 и 24/30. Чем уже область, тем выше холмик, площадь которого неизменная единица. Эти соотношения выбраны, потому что они все около 0.8, а не потому что именно такие могут возникнут при 0.8 исходной вероятности. Выбраны, чтобы продемонстрировать, какая область возможных значений остается даже при 30 проведенных экспериментах.
Код программы для этого графика здесь.
Из чего следует, что в действительности экспериментальную вероятность абсолютно точно не определить, а можно лишь предположить область возможного расположения таковой величины, с точностью в зависимости от того сколько произвели замеров.
Сколько бы экспериментов не провели, всегда остается вероятность, что исходная вероятность может оказаться и 0.0001 и 0.9999. Для упрощения крайние маловероятные значения отбрасываются. И берется, скажем, например 95% от основной площади графика распределения.
Такая штука называется доверительные интервалы. Каких-либо рекомендаций, сколько именно и почему процентов нужно оставить я не встречал. Для прогноза погоды берут поменьше, для запуска космических шаттлов побольше. Так же обычно не упоминают, какой все же используется доверительный интервал на вероятность событий и используется ли вообще.
В моей программе расчет границ доверительного интервала осуществляется здесь.
Получилось, что вероятность события определяется плотностью вероятностей значения вероятности, и на это еще нужно наложить процент области основных значений, чтобы можно было хоть что-то определенно сказать, какая все же вероятность у исследуемого события.
Теперь, про более реальный эксперимент.
Пусть будет всем надоевшая монетка, подбрасываем эту монетку, и получаем 4 из 5 выпадений решкой — очень реальный случай. В действительности это не совсем то же самое, что описал чуть выше. Чем это отличается от предыдущего эксперимента?
Предыдущий эксперимент описывался из предположения, что вероятность события может быть равнораспределена на интервале от 0 до 1. В программе это задается строкой double probability = get_random_real_0_1();. Но не бывает монеток с вероятностью выпадения, скажем, 0.1 или 0.9 всегда одной стороной.
Если взять тысячу самых разных монет от обычных до самых кривых, и для каждой произвести замер выпадения путем подбрасывания их по тысяче и более раз, то это покажет, что реально они выпадают одной стороной в диапазоне от 0.4 до 0.6 (это числа навскидку, не буду же я выискивать 1000 монет и каждую подбрасывать 1000 раз).
Как этот факт меняет программу для симуляции вероятностей одной конкретной монеты, для которой получили 4 из 5 выпадения решкой?
Допустим, что распределение выпадения одной стороной для монет описывается как приближение к графику нормального распределения взятого с параметрами средняя = 0.5, стандартное отклонение = 0.1. (на графике ниже он изображен черным цветом).
Когда в программе меняю генерацию исходной вероятности с равнораспределенной на распределенную по указанному правилу, то получаю следующие графики:
Код этого варианта здесь.
Видно, что распределения сильно сдвинулись и теперь определяют несколько иную область, в которой высоковероятно возможна искомая вероятность. Поэтому, если известно, какие вероятности бывают для тех вещей, одну из которых хотим измерить, то это может несколько улучшить результат.
В итоге, 4/5 это ни о чем не говорит и даже 50 проведенных экспериментов не очень информативны. Это очень мало информации, чтобы определить, что за вероятность все же лежит в основе эксперимента.
Как упомянул в комментариях jzha, человек существенно знающий математику, данные графики можно построить и путем точных формул. Но цель данной статьи все же как можно наглядней показать как образуется то, что все в повседневной жизни называют вероятностью.
Для того что бы это строить путем точных формул, это нужно рассмотреть имеющиеся в наличии данные по распределению вероятностей всех монет через аппроксимацию бета распределением, и путем сопряжения распределений выводить уже расчеты. Такая схема это существенный объем по объяснениям, как это сделать, и если я это здесь буду описывать, то это получится скорее статья по математическим расчетам, а не про бытовые вероятности.
Как получить в формулах описанный частный случай с монетой, смотрите комментарии от jzha.
Что такое вероятность
Это слово можно слышать каждый день, но, если задуматься, то что такое вероятность? И как часто в повседневной жизни мы встречаемся с вероятностями? Может, не все так просто, как кажется на первый взгляд? Есть несколько интересных свойств (если не сказать странных)..
Вероятность события
Люди начали задумываться о вероятности и случайности наверное с тех пор, как изобрели азартные игры. Древнейшая из них — игра в кости. Самые старые кости датируются 20 веком до нашей ты и были найдены в Египте. Скорее всего, древние люди расценивали исход игры, как волю богов, но не замечать закономерности не могли.
Первым, кто правильно посчитал количество вариантов комбинаций из трех кубиков, был Галилео Галилей. Оказалось, что всего таких комбинаций 216 штук (6х6х6=6 3 ). 3 500 лет до Галилея никто не мог посчитать это правильно, хотя многие пытались.
Сегодня мы сталкиваемся с этим понятием каждый день, но плохо его понимаем и не умеем толком оценивать.
То, что люди не умеют правильно оценивать вероятности и риски с этим связанные, было доказано еще 1979 Даниэлем Канеманом и Амосом Тверски. А в 2020 году за эту работу Канеман, (Тверски к тому времени уже умер) получил Нобелевскую премию по экономике.
Пока приходится выбирать между «точно случится» и «точно не случится», все в порядке, сравниваем ноль и единицу. А как только дело доходит до таких задач как:
Вероятность опоздать на важное собеседование, если долго выбирать в чем пойти составляет 0,6, но если хорошо одеться, вы будете чувствовать себя уверение и вероятность договориться будет выше — 0,7. Можно быстро собраться и шансы опоздать уменьшаться до 0,1, но и вероятность получить работу сократится до 0,3. Ваше решение.
Скорее всего, принять правильное решение сможет только человек применяющий теорему Байеса ежедневно. Так что такое вероятность события и как она определяется?
Вероятность в математике
Объяснить простыми словами вероятность, конечно, можно сразу и на этом закончить, но если «копнуть» глубже, будет немного сложнее, но интереснее. Начнем с простого.
Поначалу все довольно просто, вероятность — это число от 0 до 1, которое выражает возможность наступления события. Если что-то определенно случится, то вероятность события — «единица», если что-то произойти не может, то вероятность «ноль«. А вот между ними, самое непонятное.
Проще всего показать пример с помощью монетки и известной игры «орел и решка». Если исключить такие варианты как: монетка упадет на ребро, повиснет в воздухе или потеряется, то остается либо орел, либо решка. Один бросок монетки два возможных варианта:
А теперь представим, что вам предложили сыграть в игру, ставка 100 долларов. Вы бросаете монетку 3 раза и если выпадет два «орла» подряд, выигрываете, а если нет — проигрываете. Станете ли вы играть, если да, то сколько раундов? Можете написать в комментарии.
Первая странность
Дело в том, что вероятность и ее оценка полезна только в случае бесконечного числа повторений. Или хотя бы достаточно большого числа, чтобы уверено «округлять» значения для достаточной точности.
Вот симуляция подбрасывания монетки, как видно на графике, чем больше повторений, тем ближе к значению 0,5 (когда ровно половина орлов и половина решек). Но, даже если подбросить монету тысячу раз, будет совсем не 50 на 50, а, например, 0,507 и 0,493.
А когда же вероятность будет 0,5? Если подбросить монетку бесконечное количество раз, то вероятность «орла» составит точно 0,5. А если бросков недостаточно, то никаких 50 на 50 не получится. Попробуйте сами провести эксперимент хотя бы с 100 попытками.
Получается, что в идеальном мире математики и в нашем реальном мире вероятности имеют немного разные значения?
Что такое вероятность события?
Это предел частоты наблюдения этого самого события, при условии, что количество наблюдений стремится к бесконечности.
n — это количество наблюдений, e — это количество событий и, самое важное n→ ∞.
То есть вроде бы тоже что и 1/2 несколькими абзацами выше, но уже с условием, что монетку нужно бросить бесконечное количество раз. Говоря простым языком, вероятность обретает смысл, только в случае большого числа повторений, лучше всего, бесконечного.
Вероятность в жизни
Как работает вероятность в реальной жизни. Представим, что вы заболели болезнью, летальность которой — 5%. Значит ли это, что вы точно не умрете? Нет! Это значит, что если бы вы заболели 100 раз, то в 5 случаях из ста умерли бы. Бесполезное знание, не так ли?
Вторая странность вероятности
Вероятность не всегда имеет практическое значение. 5% — это важная величина, но она имеет смысл только на уровне Всемирной организации здравоохранения, где собирают статистику. Они разделят количество умерших на количество заболевших (и тех и других, миллионы) и получат свои 5%.
Для одного конкретного больного же шанс выжить 0,95 не дает никаких гарантий, он вполне может попасть в эти 5% случаев.
То же и с азартными играми и лотереями. Можно сыграть один раз и выиграть, а можно не выиграть никогда. Вероятность выигрыша важна для казино, они имеют дело с достаточно большими числами для которых теория вероятностей работает. Для рядового игрока считать шансы бессмысленно. Это просто вопрос случайности.
Вероятность и проценты
В обывательском понимании вероятность выражается в процентах. Мы говорим о 100% вероятности, когда все точно известно ли 50 на 50, когда может произойти либо одно событие, либо другое. Математик же скажет, что это не верно, вероятность нельзя переводить в проценты. Правильно говорить 0,5, а не 50%.
Хотя количественно, это ничего не меняет. Так что в быту (пока рядом нет математиков) вполне можно считать, что вероятность 0,2 — это 20%.
Физика
Ситуация така же как и с математикой. Пока мы остаемся в рамках классической механики, все интуитивно понятно. Например, что такое вероятность отказа? Это количество отказавших устройств разделенное на количество всех механизмов.
f — количество отказов, n — количество всех механизмов.
Вот только с оговоркой, что речь идет об определенном промежутке времени, если взять, как математики, бесконечность, то вероятность отказа будет равняться 1. То есть все сломается так или иначе.
Если за время работы 10 000 часов из 10 машин сломалась одна, то вероятность отказа будет 1/10=0,1. Опять все просто и скучно на первых порах.
А вот в квантовой механике все намного интереснее. Здесь все состояния частиц являются вероятностями… В случае с монеткой, она будет находиться в состоянии квантовой суперпозиции, говоря простыми словами выпадет орел и решка одновременно.
Если в нашем большом мире ее состояние можно записать 1 (орел) или 2 (решка), то в мире элементарных частиц квантовой физики: 1-2 или 1+2: «с большей вероятностью орел» или «с меньшей вероятностью решка». Причем речь идет не о большом количестве экспериментов, а о вероятности, что монетка находится в каком-то состоянии прямо сейчас.
То есть мы вообще не знаем, орел там или решка выпало.
Чтобы совсем не запутаться в неопределенностях и запутанностях квантовой физики, вернемся к азартным играм.
Обыграть казино можно, если не играть
Представим ситуацию, вы в казино, и видите, что на рулетке выпало «красное» 3 раза подряд. На что вы поставите? На «черное» или на «красное»?
Если вам кажется, что вероятность выиграть при ставке на черное выше, вы ошибаетесь. Тут речь идет о независимых событиях. У рулетки нет памяти, и при каждом броске шарика вероятность выпадения всегда одинаковая и не зависит от предыдущих. Это когнитивное искажение называется «ошибка игрока» или «эффект Монте-Карло».
В 1913 году в казино Монте-Карло «черное» выпало 26 (двадцать шесть) раз подряд. Многие игроки разорились, полагая, что «ну сейчас то точно красное…»
Третья странность
В случае разных видов событий вероятность ведет себя по-разному.
Например: вероятность сбить самолет одной ракетой составляет 0,6, сколько ракет нужно выпустить, чтобы наверняка сбить самолет одной из ракет? Если вы ответите «две», то будете не правы.
В случае несовместных событий (таких которые не могут произойти одновременно) вероятности складываются: 0,6+0,6=1,2 (немного с запасом).
Но в примере с самолетом, как раз таки выпустить несколько ракет мы можем одновременно тогда нужно использовать другую формулу для сложения двух вероятностей:
То есть, нет, двух ракет будет недостаточно.
А если задаться вопросом: может ли случиться так, что обе ракеты попадут в цель? Такое может произойти, тогда такое событие будет совместным и независимым и вероятность его наступления нужно считать иначе:
Очевидно, что шансов попасть двумя ракетами одновременно меньше, чем попасть только одной из двух. Причем в 2,33 раза меньше.
Разницу между совместными и несовместными событиями можно показать на примере игральной кости. Если мы хотим определить с какой вероятностью на кубике выпадет 6, а с какой 5, речь будет идти о несовместных событиях. Одновременно нельзя получить и то и другое значение. А вот если взять две игральные кости, то одновременно выпасть 6 и 5 может и эти события будут совместными и независимыми.
Но в реальности, если обе ракеты будут запущены по одному и тому же самолету, события не будут независимы. Пока пилот будет уворачиваться от первой ракеты, шансы второй попасть в цель будут расти. Значит эти события все-таки как то связаны. Как быть в таком случае? Тут уж начинает работать в полную силу теория вероятностей, простым языком, без математики никак не обойтись.
Теорема Байеса
На помощь приходит формула Байеса, с помощью которой как раз и можно рассчитать вероятность одного события с учетом того, что произошло другое. В нашем примере, первая ракета промахнулась, но это повлияло на шансы второй, например, они выросли до 0,7. Итак, первый выстрел 0,6, а второй 0,7. Получится ли наверняка попасть?
Как рассчитать условную вероятность сбить самолет второй ракетой:
P(a|b)= P(a) х P(b|a) / P(b)
Тут нужно немного объяснить значения.
P(a|b) — это условная вероятность события b (вторая ракета поразила цель) в результате наступления события a (первая ракета промахнулась, но дала повышенный шанс второй).
P(a) — изначальная вероятность события a, без каких-то условий в нашем случае 0,6.
P(b|a) — вероятность события b при условии, что гипотеза a (про повышение шанса) верна. В нашем случае 0,7
P(b) — полная вероятность. Так как ракет у нас две, считать нужно так: вероятность первого события умножить на 1/2, и вероятность второго на 1/2. Первое событие — промах, значит 1-0,6=0,4, второе событие — поражение цели — 0,7
Полная вероятность будет равна 0,4х0,5+0,7х0,5=0,2+0,35=0,55
В итоге мы получим:
Как видите, все равно не рассчитывать на 100% попадание нельзя.
Конечно, ситуация описанная выше, условная. Это просто иллюстрация для расчета вероятности. Современные ракеты имеют табличные вероятности поражения цели близкие к 0,9, но стоит учитывать то, как эти значения получены.
Это некие симуляции для определенных условий, которых очень много. Например, цель движется навстречу или удаляется? С какого ракурса производится пуск, под каким углом? Цель малозаметная или нет, и какова ее эффективная площадь рассеивания?
А вот для более старых ракет воздух-воздух, можно получить реальные данные: количество выпущенных в боевых условиях ракет и количество сбитых противников. Только, эти, правдивые данные, уже устарели.
Какова вероятность угадать…
Как посчитать вероятность угадать PIN код банковской карточки состоящей из 4 цифр? Вероятность случайно угадать одну цифру 1 к 10 (от 0 до 9).
Если бы цифр было две то к каждому подбору одной цифры добавилось бы еще 10 вариантов другой. То есть, ставим на первое место 0, а на втором может быть любая из 10 цифр. Получается 10х10=100 комбинаций. То есть 10 2 (десять в квадрате).
А вот если в качестве пинкода использовать дату рождения то подбирать нужно уже не 4 случайные цифры. Две первые будут не случайными это или 19, или 20. Тогда комбинаций уже не десять тысяч, а всего 2х100=200. Сотня комбинаций для «19» и еще сотня для «20».
Такая это разностороння штука, вероятность. Согласитесь, иногда повседневное понятие может открыться с новой стороны, стоит попытаться разобраться в нем чуть-чуть лучше.
Теория вероятности формула и примеры для чайников, задачи с решениями, как найти классическую вероятность в математике, как обозначается и в чем выражается вероятность
В высшей математике существует раздел, изучающий статистику. По сути, это теоретическая база. Направление изучает закономерности и случайные явления, систематизирует данные для обоснования принятых решений. Основой науки является теория вероятности, чьи формулы используются для предположения о свершении того или иного события. Существует и алгоритм, с помощью которого решаются все задачи.
Развитие науки
Изучение вероятности наступления того или иного события берёт своё начало со Средних веков. Первоначально наблюдаемые закономерности не имели математического описания и основывались на различных эмпирических фактах. Ранние работы были непосредственно связаны с азартными играми. Французские учёные Паскаль и Ферма пытались выявить и рассчитать закономерности при бросании костей.
Независимо от них этим вопросом занимался и голландский физик Гюйгенс. В своей работе он оперировал такими понятиями, как величина шанса, математическое ожидание, цена случайности. Он первый, кто попробовал применить теоремы сложения и умножения в описание вероятности.
Фундаментальное значение для развития науки имели труды Бернулли, Байеса, Лапласа и Пуассона. Их стараниями были сформулированы и доказаны предельные теоремы, предложены первые формулы и примеры. В теории вероятности начали использовать анализ ошибочного наблюдения. Но лишь Карл Гаусс детально смог разобраться в нормальном распределении случайной величины.
В XIX веке русские и европейские учёные смогли доказать сделанные ранее предложения. В первую очередь это касалось закона больших чисел и центральной предельной теоремы. Формальная система для описания теории была принята в 1933 году. Предложил её академик СССР Андрей Колмогоров. Руководствуясь идеями теории множеств, меры и интегрирования, он смог систематизировать аксиомы и с их помощью описать классическую теорию вероятности. На основании его работ была создана новая теория — случайных процессов.
В его систему входит:
Объекты, удовлетворяющие системе, были названы полем вероятности (вероятностным пространством). Было принято, что аксиомы не могут противоречить друг другу. Аксиоматизация позволила привести все предположения к строгому математическому виду и стала восприниматься как один из разделов математического вычисления.
Сущность предмета
Предметом изучения науки являются закономерности, появляющиеся в случайных событиях, результат которых нельзя установить заранее. Но не все эксперименты можно изучать с помощью теории, а лишь те, что повторяются при одних и тех же условиях.
Существует понятие «статистической устойчивости». Если существует некоторое событие «А», которое может наступить в результате события или не произойти, то часть экспериментов должна стабилизироваться. При этом с увеличением числа экспериментов вероятность повторения стремится к определённому числу Р(А). Оно и является характеристикой, определяющей степень возможности наступления события «А».
Объяснить основы теории вероятности для чайников можно с помощью классических понятий:
Основополагающими формулами являются выражения Байеса и Бернулли.
Алгоритм решения
Теория вероятностей используется, когда необходимо сделать прогноз на выпадение того или иного шанса в эксперименте. Случайность является основным понятием предмета. Она обозначает явление, для которого невозможно точно вычислить периодичность наступления, поэтому в задачах находят именно число возможностей. По своей сути вероятность — функция, способная принимать 3 значения:
Чтобы высчитать случайность, рекомендуется придерживаться разработанного алгоритма. Следует внимательно изучить задание и определить, вероятность чего необходимо вычислить, а также события, от которых случайность будет изменяться. Определив схему задачи, подобрать формулу и, подставив в неё все имеющиеся данные, рассчитать шанс. Чтобы правильно определиться с нужной схемой, необходимо знать о количестве экспериментов, существовании между ними зависимости, возможности применения нескольких гипотез.
Для понятия принципа нахождения случайности часто предлагается к решению следующая задача. В закрытом ящике лежит 6 разноцветных перемешанных между собой шаров. Из них 2 красного цвета, 3 зелёного и 1 белый. Нужно посчитать, насколько шансов достать белый шар меньше, чем цветной.
Случайность доставания цветного шара обозначают как событие «А». Согласно определению вероятность «А» определяется отношением благоприятствующих шансов к общему числу исходов. Существует 6 различных возможностей вытянуть шар, из них 5 относятся к благоприятным, поэтому эксперимент покажет, что вероятность достать из ящика цветной шар будет составлять P = 5 / 6 = 0,83(3). Это и есть показатель оценки степени случайности.
Таким способом можно узнать различную вероятность любого исхода, не прибегая к собиранию статистики и её анализу, то есть решить задачу математически, как, например, следующую. В таксопарке используется 2 синих, 9 красных и 4 чёрных машины. Нужно определить, какая существует возможность приезда по вызову красного автомобиля. Решение простое. Так как всего имеется 15 машин, вероятность приезда именно красной составит Р = 9/15 или 0,6.
Теорема Муавра — Лапласа
Это предельное определение, предложенное Лапласом в 1812 году. В основе теоремы используется формула Бернулли, но применяется она к довольно большому количеству экспериментов. Суть её в следующем: если при независимых экспериментах n существует вероятность свершения случайного события N равная нулю или единице, при этом число испытаний равняется m, искомое значение близко к интегральной функции Лапласа.
Стандартные значения, соответствующие нормальному распределению, сведены в статистические таблицы. Взять их можно в решебниках задач по теории. Под приведёнными значениями понимается площадь кривой от нуля до числа x. Например, если придумать какую-либо величину площади между числами 0 и 2,34, согласно таблице она составит 0,49036.
При рассмотрении свершения m событий в n экспериментах существует вероятность, заключённая в определённом отрезке между значениями a и b, поэтому выражение для нахождения можно найти из формулы: Р(m) = (n! * pm * qn-m) / m!(n-m)!. Уравнение требует сложных и громоздких расчётов, поэтому, чтобы найти вероятность, в математике из формулы используют асимптотическое распределение. Но возможно это только при условии, что Р(m) неизменное, а число экспериментов будет стремиться к бесконечности.
Реальная формула, описывающая теорему сложна, поэтому используется приближённая:
Р(m) = 1 / ((2p*n*p*q)1/2) exp (-X2m/2).
Использовать её рекомендуют только при значениях событий больше 20, а экспериментов 100. Например, брак выпускаемых изделий составляет 15%. Поступает товар в упаковках по 100 штук. Нужно найти вероятность, что случайно взятая коробка будет укомплектована 13 бракованными изделиями. При этом число товара низкого качества в упаковке не превысит 20.
За испытание необходимо принять изготовление. Вероятность появления события, которое необходимо искать составит p = 0,15. Далее, находится случайность: n * p = 15 и n * p * q = 12,75. Исходные данные подставляют в формулу Лапласа:
Таким образом, примерно 9,5% упаковок от общего количества содержат 13 товаров плохого качества, а в 92% случаях число изделий с браком не превышает 20.
Сочетание взаимных событий
При рассмотрении задач может возникнуть вопрос, как различные события могут зависеть друг от друга. Для характеристики их взаимосвязи вводится понятие условная вероятность. Например, имеются 2 случайных исхода одного эксперимента «А» и «В». Тогда условной вероятностью первого события «А» при условии, что второе произошло, называется отношение P (AB) / P (B).
Необходимо определить, с какой вероятностью в семье с ребёнком-девочкой родится мальчик. За вероятность появления в семье двух мальчиков нужно взять «А», а за ребёнка противоположного пола событие «В». Существует 4 возможных исхода, поэтому справедливо будет записать: P (AB) = 1/4, P(B) = 3/4. Подставив эти значения в формулу можно рассчитать вероятность: P (A/B) = (1/4) / (3/4) = 0,3. Первый исход считается независимым от второго, если наступление события «В» не оказывает влияние.
Если же события взаимны, они влияют друг на друга. В этом случае используется их перемножение: P(AB) = P(A) *PB (А). Например, в пачке 26 лотерей, из которых 3 призовых. Нужно определить шанс, что первый билет будет призовой и вероятность, что второй билет также будет с выигрышем, но при условии, что первый билет уже убрали.
Для решения задачи вначале нужно найти шанс, что первый билет будет с выигрышем: P (A) = 3/26 = 0,115. Затем рассчитать вероятность двух выигрышей подряд: P(AB) = P(A) * P(B) = (3/26) * (2/25) = 0,009.
Это довольно простые задачи, но существуют задания, для решения которых понадобится применять несколько формул. Такой расчёт вероятности наступления того или иного события может быть трудным, требующим повышенного внимания. Для облегчения вычислений существуют специальные интернет-порталы. Они предлагают рассчитать исход события даже тем, кто и вовсе не разбирается в теории. Например, allcalc.ru, kontrolnaya-rabota.ru, matburo.ru, math.semestr.ru.
На этих сайтах от пользователей требуется лишь заполнить предлагаемые формы исходными данными и нажать кнопку «Рассчитать». Все калькуляторы совмещают в себе быстроту нахождения ответа и ознакомление с подробным описанием решения.