в чем хранить водород
Начнем с начала: что такое водород и в чем его хранят.
Это моя вторая запись из цикла «Живые хроники одного стартапа». С первой записи прошло почти две недели, и мне есть чем поделиться.
Уважаемые читатели! Кто-нибудь из вас хоть раз в жизни видел молекулу водорода? Или может быть атомарный водород? Или возможно протон Н+? Признаюсь, я видела водород только пару раз в жизни, когда на лабораторных работах по химии мы бросали цинк в соляную кислоту и наблюдали бурное выделение пузырьков газа. Это было занимательно, но тогда мы не задумывались, что этот выделяющийся газ можно собирать, хранить и использовать как топливо.
На сегодняшний день реализованы различные методы хранения водорода:
Физические:
Сжатый газообразный водород в газовых баллонах; стационарные массивные системы хранения, включая подземные резервуары; хранение в трубопроводах; хранение в стеклянных микросферах.
Жидкий водород в стационарных и транспортных криогенных контейнерах.
Хранение газообразного водорода
Это не является более сложной проблемой, чем хранение природного газа. На практике для этого применяют газгольдеры, естественные подземные резервуары, хранилища, созданные подземными атомными взрывами. Доказана принципиальная возможность хранения газообразного водорода в соляных кавернах, создаваемых путём растворения соли водой через буровые скважины.
Для хранения газообразного водорода при давлении до 100 МПа используют сварные сосуды с двух- или многослойными стенками. Внутренняя стенка такого сосуда выполнена из аустенитной нержавеющей стали или другого материала, совместимого с водородом в условиях высокого давления, внешние слои – из высокопрочных сталей. Для этих целей применяют и бесшовные толстостенные сосуды из низкоуглеродистых сталей, расчитанных на давление до 40 – 70 МПа.
Одним из наиболее перспективных способов хранения больших количеств водорода является хранение его в водоносных горизонтах. Годовые потери составляют при таком способе хранения 1 – 3%. Эту величину потерь подтверждает опыт хранения природного газа.
Газообразный водород возможно хранить и перевозить в стальных сосудах под давлением до 20 МПа. Такие ёмкости можно подвозить к месту потребления на автомобильных или железнодорожных платформах, как в стандартной таре, так и в специально сконструированных контейнерах.
Баллоны для хранения водорода достаточно просты и компактны. Однако для хранения 1 кг водорода требуются болоны массой 33 кг. Прогресс в материаловедении даёт возможность снизить массу материала баллона до 20 кг на 1 кг водорода, а в дальнейшем возможно снижение до 8 – 10 кг. Пока масса водорода при хранении его в баллонах составляет примерно 2 – 3% от массы самого баллона.
Большие количества водорода можно хранить в крупных газгольдерах под давлением. Газгольдеры обычно изготовляют из углеродистой стали. Рабочее давление в них обычно не превышает 10 МПа. Вследствие малой плотности газообразного водорода хранить его в таких ёмкостях выгодно лишь в сравнительно небольших количествах. Повышение же давление сверх указанного, например, до сотен МПа, во-первых, вызывает трудности, связанные с водородной коррозией углеродистых сталей, и, во-вторых, приводит к существенному удорожанию подобных ёмкостей.
Для хранения очень больших количеств водорода экономически эффективным является способ хранения в истощённых газовых и водоносных пластах. В США насчитывается более 300 подземных хранилищ газа.
Хранение жидкого водорода
Среди многих уникальных свойств водорода, которые важно учитывать при его хранении в жидком виде, одно является особенно важным. Водород в жидком состоянии находится в узком интервале температур: от точки кипения 20К до точки замерзания 17К, когда он переходит в твёрдое состояние. Если температура поднимается выше точки кипения, водород мгновенно переходит из жидкого состояния в газообразное.
Чтобы не допустить местных перегревов, сосуды, которые заполняют жидким водородом, следует предварительно охладить до температуры, близкой к точке кипения водорода, только после этого можно заполнять их жидким водородом. Для этого через систему пропускают охлаждающий газ, что связано с большими расходами водорода на захолаживание ёмкости.
Переход водорода из жидкого состояния в газообразное связан с неизбежными потерями от испарения. Стоимость и энергосодержание испаряющегося газа значительны. Поэтому организация использования этого газа с точки зрения экономики и техники безопасности необходимы. По условиям безопасной эксплуатации криогенного сосуда необходимо, чтобы после достижения максимального рабочего давления в ёмкости газовое пространство составляло не менее 5 %.
К резервуарам для хранения жидкого водорода предъявляют ряд требований:
— конструкция резервуара должна обеспечивать прочность и надёжность в работе, длительную безопасную эксплуатацию;
— расход жидкого водорода на предварительное охлаждение хранилища перед его заполнением жидким водородом должен быть минимальным;
— резервуар для хранения должен быть снабжён средствами для быстрого заполнения жидким водородом и быстрой выдачи хранимого продукта.
Главная часть криогенной системы хранения водорода – теплоизолированные сосуды, масса которых примерно в 4 – 5 раз меньше на 1 кг хранимого водорода, чем при баллонном хранении под высоким давлением. В криогенных системах хранения жидкого водорода на 1 кг водорода приходится 6 – 8 кг массы криогенного сосуда, а по объёмным характеристикам криогенные сосуды соответствуют хранению газообразного водорода под давлением 40 МПа.
Жидкий водород в больших количествах хранят в специальных хранилищах объёмом до 5 тыс. м3. Крупное шарообразное хранилище для жидкого водорода объёмом 2850 м3 имеет внутренний диаметр алюминиевой сферы 17,4 м3.
Хранение и транспортирование водорода в химически связанном состоянии.
Преимущества хранения и транспортирование водорода в форме аммиака, метанола, этанола на дальние расстояния состоят в высокой плотности объёмного содержания водорода. Однако в этих формах хранения водорода среда хранения используется однократно. Температура сжижения аммиака 239,76 К, критическая температура 405 К, так что при нормальной температуре аммиак сжижается при давлении 1,0 Мпа и его можно транспортировать по трубам и хранить в жидком виде.
В диссоциаторах для разложения аммиака (крекерах), которое протекает при температурах примерно порядка 1173 – 1073 К и атмосферном давлении, используется отработанный железный катализатор для синтеза аммиака. Для получения одного кг водорода затрачивается 5,65 кг аммиака. Что касается затрат тепла на диссоциацию аммиака при использовании этого тепла со стороны, то теплота сгорания полученного водорода может до 20% превосходить теплоту сгорания использованного в процессе разложения аммиака. Если же для процесса диссоциации используется водород, полученный в процессе, то КПД такого процесса (отношение теплоты полученного газа к теплоте сгорания затраченного аммиака) не превышает 60 – 70%.
Водород из метанола может быть получен по двум схемам: либо методом каталитического разложения:
СН3ОН = СО + 2 Н2 – 90 кДж
с последующей каталитической конверсией СО, либо каталитической паровой конверсии в одну стадию:
Н2О + СН3ОН = СО2 + 3 Н2 – 49 кДж.
Обычно для процесса используют цинк-хромовый катализатор синтеза метанола. Процесс протекает при 573 – 673 К. Метанол можно использовать как горючее для процессов конверсии. В этом случае КПД процесса получения водорода составляет 65 – 70% (отношение теплоты полученного водорода к теплоте сгорания затраченного метанола); если теплота для процесса получения водорода подводится извне, теплота сгорания водорода, полученного методом каталитического разложения, на 22%, а водорода, полученного методом паровой конверсии, на 15% превосходят теплоту сгорания затраченного метанола.
Гидридная система хранения водорода
В случае хранения водорода в гидридной форме отпадает необходимость в громоздких и тяжёлых баллонах, требуемых при хранении газообразного водорода в сжатом виде, или сложных в изготовлении и дорогих сосудов для хранения жидкого водорода. При хранении водорода в виде гидридов объём системы уменьшается примерно в 3 раза по сравнению с объёмом хранения в баллонах. Упрощается транспортирование водорода. Отпадают расходы на конверсию и сжижение водорода.
Водород из гидридов металлов можно получить по двум реакциям: гидролиза и диссоциации.
Методом гидролиза можно получать вдвое больше водорода, чем его находится в гидриде. Однако этот процесс практически необратим. Метод получения водорода термической диссоциацией гидрида даёт возможность создать аккумуляторы водорода, для которых незначительное изменение температуры и давления в системе вызывает существенное изменение равновесия реакции образования гидрида.
Стационарные устройства для хранения водорода в форме гидридов не имеет строгих ограничений по массе и объёму, поэтому лимитирующим фактором выбора того или иного гидрида будет, по всей вероятности, его стоимость. Для некоторых направлений использования может оказаться полезным гидрид ванадия, поскольку он хорошо диссоциирует при температуре, близкой в 270 К. Гидрид магния является относительно недорогим, но имеет сравнительно высокую температуру диссоциации 560 – 570 К и высокую теплоту образования. Железо-титановый сплав сравнительно недорог, а гидрид его диссоциирует при температурах 320 – 370 К с низкой теплотой образования. Использование гидридов имеет значительные преимущества в отношении техники безопасности. Повреждённый сосуд с гидридом водорода представляет значительно меньшую опасность, чем повреждённый жидководородный танк или сосуд высокого давления, заполненный водородом.
Наиболее перспективным веществом для хранения водорода является боргидрид лития LiBH4. Это вещество способно удерживать до 18% водорода по массе. Существенным недостатком этого соединения является высокая температура (300 С) при которой боргидрид разлагается и высвобождает водород.
Другие материалы для хранения водорода
Идея ученых заключается в том, что структура кератина (белка, из которого в основном состоят волокна куриных перьев) при процедуре карбонизации становится гораздо более пористой, чем в обычном состоянии, и белок становится способным поглощать и удерживать большое количество водорода.
Авторы посчитали, что применение карбонизированных волокон куриных перьев более эффективно в хранении водорода, чем углеродные нанотрубки или гидриды металлов.
К тому же куриные перья – дешевый материал.
Мы разобрали все возможные на сегодняшний день варианты хранения водорода. А для чего же его хранить, да еще и в больших количествах? Конечно, для использования в топливных элементах.
Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:
• они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию).
• химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке).
• они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).
• у топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).
• высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. У существующих топливных элементов КПД составляет 60-80%.
• КПД почти не зависит от коэффициента загрузки.
• ёмкость в несколько раз выше, чем в существующих аккумуляторах.
• полное отсутствие экологически вредных выбросов. Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).
Проблемы топливных элементов
Все потребители водорода условно разделяются на три большие группы. К первой относятся те, которые используют для производства конечного продукта природные топлива, производят из них водород и применяют его на месте в цикле наряду с побочным производством других продуктов. Целесообразность замены привычных производственных технологий определяется при сравнении конечных затрат.
Вторую группу составляют потребители товарного водорода. В связи с переходом на безотходную переработку нефти возможно значительное увеличение потребности в товарном водороде.
В третью группу входят новые возможные потребители водорода: автотранспорт, авиация, пиковые электростанции, автономные энергосистемы, установки прямого восстановления металлов из руд и т. п. В далекой перспективе эта третья категория потребителей может стать основной.
Как собирать, хранить и поставлять водород
В одном из прошлых постов мы выяснили, что в обозримой перспективе себестоимость производства водорода снизится настолько, что этот газ станет конкурентоспособным энергоносителем на транспорте и в энергетике. Но есть ещё одна потенциальная проблема водородной экономики: хранить, транспортировать и поставлять H2 не так просто, как кажется. В этот раз мы расскажем, какие технологии решат эти задач и не «съедят» ли транспортные издержки прибыль будущих водородных магнатов.
Где и как хранить водород
По мере превращения водорода из промышленного в потребительский товар — им будут заправлять машины, питать электросистему и отопление домов — его нужно будет запасать в больших количествах. Это нужно будет и для того, чтобы цены на водород не скакали. Причём газ будет храниться долго, поэтому не столько важна скорость закачки/откачки и расположение, сколько объём хранилищ.
Второй естественный резервуар для водорода — истощённые пласты залежей природного газа или нефти и водоносные горизонты. Они больше соляных пещер, но водород в них сильнее загрязняется, вступая в реакцию с горной породой, микробами, жидкостями. В такие пещеры водород пока не закачивают, поэтому считать «экономику» рано.
Карта водородного будущего Европы. Большинство соляных пещер для водорода (обозначены зелёными треугольниками) сосредоточено на севере Германии, в Нидерландах и Франции. Источник: European Hydrogen Backbone Perspective, 2020.
Однако для краткосрочного и мелкомасштабного хранения водорода такие «пещеры горного короля» не подходят — нужны баки. В резервуарах хранят сжатый или сжиженный водород, который можно быстро закачать или откачать в нужных объёмах.
Сжатый водород (при давлении 700 бар, т. е. приблизительно 690 атм.) имеет только 15% плотности энергии (количество энергии на единицу объёма) бензина, и чтобы хранить эквивалентное количество топлива, скажем, на водородной заправке, нужно в семь раз больше места.
Поэтому водород скорее всего будут мешать с аммиаком, у которого плотность больше, а места такой смеси требуется меньше, что позволит транспортировать больше водорода без увеличения объёма хранилища. Правда, придётся потратиться на конверсию и реконверсию смеси.
В каком виде транспортировать водород
Проблема подготовки водорода для транспортировки решается по-разному: H2 сжимают, сжижают, смешивают с другими веществами. У каждого из этих вариантов свои преимущества и недостатки, а оптимальное решение зависит от географии поставок, расстояния, объёма и вида водорода для потребителя.
В любом агрегатном состоянии (кроме твёрдого, конечно) водород можно пустить по имеющимся газовым трубам, что однозначно дешевле, чем строить новую инфраструктуру. Первый кандидат — газовые сети. В мире насчитывается 3 млн километров газопроводов и 400 млрд кубометров подземных хранилищ метана. Но с этим есть технические проблемы:
у водорода низкая плотность энергии, и объёмы (или время) его поставки через газопровод придётся увеличить;
водород очень горюч на воздухе, поэтому чтобы снизить риски, придётся менять оборудование по всей цепочке поставок;
не всякая инфраструктура для, например, метана подойдёт водороду; особенно это касается потребительских котлов, бойлеров и т. п. (об этом подробнее ниже);
В итоге наряду с газообразным водородом нам придётся производить его сжиженные и смешанные версии.
Как адаптировать мелких потребителей к водороду? На рисунке — возможный вариант. Это H2Rex — водородный генератор компании Toshiba (о нём мы рассказывали). Его топливные элементы вырабатывают электричество с помощью электрохимических реакций между полученным водородом и кислородом из атмосферы. Результат — электричество и тепло, которые получает потребитель. Источник: Toshiba ESS
Схожим образом водород можно включить в жидкий органический носитель. На конверсию и реконверсию при этом уйдёт 35-40% водорода, хотя объёмы поставок эти издержки покрывают.
Некоторые жидкие органические носители водорода могут быть негорючими, что делает перевозку безопаснее. Источник: Hydrogenious LOHC Technologies / YouTube
Как доставлять водород
Как и углеводороды сейчас, водород перемещать по миру в основном будут трубы, суда и автоцистерны. Отправлять H2 поездами в целом будет дороже, хотя удалённым потребителям в локациях без трубопровода это возможно. В мире сегодня существует много водородопроводов, но в основном они не выходят за пределы технологических площадок химических и нефтеперерабатывающих заводов. Поэтому более оптимальный вариант — трубы для передачи природного газа.
Однако далеко не все они подходят для прокачки водорода из-за типа стали: трубы из низкопрочной стали будут портиться из-за контакта с водородом (водородное охрупчивание) и давления прокачки. При этом их пропускная способность должна быть в три раза выше из-за низкой плотности водорода. Последнее решается, как мы уже выяснили, смешиванием водорода с жидкостями, и для таких соединений также есть трубопроводы. В частности, трубы используют для прокачки аммиачно-водородной смеси. Один из аммиакопроводов, к примеру, идёт из Тольятти (Россия) до Одессы (Украина) (2,4 тыс. км).
Однако трубопровод подойдёт не для всех потребителей. В некоторые страны H2 доставят морем. Пока танкеры для перевозки водорода массово не производят. Первое такое судно, получившее название Suiso Frontier, построила компания Kawasaki Heavy Industries, а спустили его на воду в декабре 2019 года в Кобе (Япония). В марте 2020 года на танкер установили резервуар объёмом 1 250 куб. м, в котором водород будут перевозить в сжиженном состоянии.
В других проектах предполагаются танкеры, схожие по размеру с судами для СПГ, которые в качестве топлива будут сжигать в день примерно 0,2% от перевозимого водорода. Более перспективны в этом отношении танкеры, которые сейчас перевозят сжиженный нефтяной газ (СНГ). В их резервуары можно залить аммиачную и другие подобные смеси водорода. Газовозами доставлять водород дороже, чем по трубопроводам.
Правда, обычно перевозят таким способом в пределах 300 км: дальше становится невыгодно. Развитие автоперевозок водорода будет зависеть от вместимости баков. Теоретически один прицеп со сжатым газообразным водородом может вместить до 1 100 кг в лёгких композитных цилиндрах (под давлением 500 бар). Однако этот показатель редко достигается на практике, поскольку правила во всем мире ограничивают допустимое давление, высоту, ширину и вес цистерн.
Потреблять бензин или солярку грузовику совсем не обязательно — его ДВС может работать на всё том же водороде. Hyundai XCIENT Fuel Cell — первый массовый грузовик на водороде, десять копий которого поставили в 2020 в Швейцарию для коммерческого использования. Заправить такой грузовик можно 32 кг водорода, которые ему хватит примерно на 400 км хода. Источник: Hyundai.news
Второй вариант — автоцистерны со сжиженным водородом, если есть постоянные потребители и объёмы поставки компенсируют расходы на сжижение.
Как видно, экономика автоперевозок зависит от объёма поставок: чем больше требуется водорода, тем более выгодно построить трубопровод. Чем меньше и чем ближе потребитель, тем выгоднее возить водород грузовиками
Итого: сколько стоят путешествия водорода
Прежде чем подвести предварительный итог напомним, во сколько обойдётся производство «зелёного» водорода и при какой цене он станет конкурентоспособным относительно традиционных энергоносителей.
Как видно, с учётом доставки «зелёный» водород на возобновляемых источниках энергии, добытый в Японии, будет дороже импортированного из Австралии или Ближнего Востока. А вот Европа вполне может не зависеть от его поставок из Северной Африки. Источник: International Energy Agency
Более того, мы в Toshiba знаем, как включить в цепь добавленной водородной стоимости новые технологии, которые позволят снизить транспортные издержки.
Как построить водородную цепь добавленной стоимости
Вырисовывается такая картина: в густонаселенных районах Европы и США водород от большого числа местных поставщиков для небольших потребителей в основном будут возить грузовики. Крупные потребители будут получать водород либо по трубопроводам от дальних поставщиков, либо импортировать морем из соседних стран (Латинская Америка для США и Северная Африка с Ближним Востоком — для Европы).
Японии будет сложнее: местный водород будет сравнительно дорогим, поэтому для крупных потребителей возможны поставки морем из стран ближнего и дальнего зарубежья. Правда, водородная энергетика всё-таки будет «демократичнее» углеводородной благодаря доступности возобновляемых источников энергии большому числу потребителей.
В последнем случае конвертировать полученный водород поможет наш генератор на топливных элементах H2Rex, который уже производит электричество и тепло из водорода и воздуха, к примеру, для гостиницы в Кавасаки. Небольшим и удалённым от производства H2 потребителям подойдут мини-электростанции типа нашей H2One. Она вырабатывает водород методом электролиза из воды, который поддерживается встроенной солнечной батареей.
Мы убеждены, что интеграция таких источников и преобразователей энергии в сочетании со строительством водородных электростанций на ВИЭ позволит снизить зависимость потребителей от зарубежных поставок H2, которые могут оказаться для них дорогими.
Технологии и способы хранения водорода
Создание компактных, надежных и недорогих систем хранения и транспортировки водорода является одной из ключевых проблем развития водородной энергетики. Сложность этой задачи определяется тем, что в свободном состоянии водород — самый легкий и один из самых низкокипящих газов. Достаточно сказать, что в жидком и твердом состояниях водород более чем на порядок легче воды и на порядок легче бензина.
Наиболее известный способ хранения водорода — это хранение в сжатом состоянии. По своим массогабаритным характеристикам и по характеристикам взрывопожаробезопасности он не полностью удовлетворяет условиям эксплуатации в наземном транспорте и в морских условиях, особенно на подводных кораблях и аппаратах.
Взрывопожароопасным является и еще один известный вариант хранения водорода — в криогенном виде. Несмотря на то, что этот вариант хранения широко применяется в космической технике, он имеет существенные недостатки.
Неоднократно выполненные исследования проблемы взрывопожаробезопасности криогенного водорода показали, что для транспортных установок допустимо только кратковременное хранение водорода (не более нескольких суток), да и то при условии тщательного обоснования. При этом параметры взрывопожаробезопасности в значительной степени определяются объемом хранимого газа и улучшаются с уменьшением объема. Именно последнее обстоятельство позволило в лунной экспедиции космического корабля «Аполлон» использовать этот метод хранения. Что же касается возможности использования криогенного метода на кораблях и особенно на подводных лодках, где масса хранимого водорода во много раз больше, чем на космических кораблях, а время хранения составляет десятки суток, то вряд ли этот способ может оказаться приемлемым.
С точки зрения безопасности наиболее предпочтительный способ хранения водорода для транспортных средств — связанное хранение — либо в химически связанном виде (гидриды), либо с использованием управляемых способов сорбции-десорбции водорода некоторыми интерметаллическими соединениями. Именно способ связанного хранения водорода в гидридах интерметаллидов применяется на немецких подводных лодках типа U-212.
Перспективность хранения и генерации водорода в химически связанном состоянии определяется следующими особенностями этого способа:
Классификация методов хранения водорода
В соответствии с классификацией департамента энергетики США, методы хранения водородного топлива можно разделить на 2 группы.
Первая группа включает физические методы, которые используют физические процессы (главным образом, компрессирование или ожижение) для переведения газообразного водорода в компактное состояние. Водород, хранимый с помощью физических методов, состоит из молекул Н2, слабо взаимодействующих со средой хранения. На сегодня реализованы следующие физические методы хранения водорода:
Сжатый газообразный водород:
Жидкий водород: стационарные и транспортные криогенные контейнеры.
Вторая группа включает химические методы, в которых хранение водорода обеспечивается физическими или химическими процессами его взаимодействия с некоторыми материалами. Данные методы характеризуются сильным взаимодействием молекулярного либо атомарного водорода с материалом среды хранения и являются следующими:
Абсорбция в объеме материала (металлогидриды).
Хранение водорода в газообразном виде под давлением
Это самый традиционный способ хранения водорода. Поскольку водород ведет себя по добно идеальному газу при температуре окружающей среды, справедливо уравнение для идеальных газов:
где n — количество водорода, моль; R — газовая постоянная.
Количество энергии, сохраненной в форме химической энергии сжатого водорода, может быть оценено изменением теплосодержания, когда водород использован, — например, когда он реагирует с кислородом, в результате чего получается вода.
Наземное хранение газообразного водорода
Наземные водородные контейнеры хранения отличаются по размерам, но имеют, как правило, стандартное давление 20 МПа. Есть также контейнеры высокого давления (> 20 МПа) и большие сферические контейнеры низкого давления (> 15 000 м 3 и 1,2— 1,6 МПа). Самый обычный материал, используемый в водородных контейнерах, — сталь. Это весьма дешевый и практичный материал, но тяжелый, и, таким образом, гравиметрическая плотность хранения водорода с учетом массы контейнера оказывается низкой. Некоторые контейнеры сделаны из алюминия. Такие баллоны при одинаковых давлениях легче стальных.
Гравиметрическая плотность энергии (или удельная энергия) в баллоне под давлением, в отличие от объемной, очень сильно зависит от свойств материала контейнера. Традиционные стальные баллоны позволяют достигать плотности энергии приблизительно 0,45 кВт ∙ ч/кг, что эквивалентно 1,1 % массы сохраненного водорода по отношению к общей массе системы хранения. За счет оптимизации контейнера и выбора материала может быть достигнута относительная плотность 1,5—2,6 % массы сохраненного водорода от общей массы системы хранения.
Применение новых материалов позволило создать ультралегкие бесшовные контейнеры из углеродного волокна.
В этих контейнерах достигнута гравиметрическая плотность 6 % от веса.
Одно из положительных свойств контейнеров заключается в том, что они не пропускают водород, протечки практически отсутствуют. Небольшие утечки могут быть через соединения, но с помощью надлежащих стыков и регуляторов их легко предотвратить.
Подземное хранение газообразного водорода
Подземные пещеры — простой и относительно дешевый метод для крупномасштабного хранения водорода. Есть несколько различных видов пещер, которые могут использоваться: солевые пещеры, естественные пещеры и структуры водоносного слоя. Соль часто залегает в форме уровней, которые могут иметь толщину до нескольких сотен метров. Они фактически непроницаемы для воды и воздуха.
Водоносные слои расположены в пористых геологических уровнях. Газ вводится в пористый слой, первоначально заполненный водой, в котором и накапливается. Применение этого метода требует специальных геологических условий, он может использоваться только в некоторых регионах.
Помимо солевых пещер и водоносных слоев, водород может быть сохранен в естественных и искусственных пещерах.
Хранение водорода в сжиженном виде
Жидкий водород используется как топливо в космической технологии в течение многих лет. Сосуды с жидким водородом легче, чем сосуды под давлением.
Однако водород превращается в жидкость при температуре 20,25 °К, и следовательно, система хранения требует сложных методов изоляции для предотвращения испарения. Квантово-механический анализ водорода показывает, что есть два различных вида водородных молекул: ортоводород с параллельным ядерным вращением и параводород с антипараллельным ядерным вращением. Это определяет необычное поведение теплоемкости водорода при низких температурах и приводит к отличию идеальной необходимой работы для сжижения водорода от экспериментальных данных.
Реальная энергия, которая должна быть израсходована для сжижения водорода, — при близительно 11 кВт ∙ ч/кг, что составляет около 28 % от высшей теплоты горения водорода. Это одна из самых больших проблем использования жидкого водорода. Однако эта потеря энергии в некоторых случаях частично компенсируется большой ее плотностью.
Контейнеры хранения теряют энергию при неизбежном испарении водорода, которое вызвано теплопроводностью изоляции.
Потери на испарение изменяются от 0,06 % в день для больших контейнеров до 3 % в день — для маленьких сосудов. Контейнеры обычно имеют комбинированную изоляцию. Она включает вакуумную изоляцию, охлаждаемые паром лучевые экраны и обычную многослойную изоляцию (рис. 1.6).
Рис. 1.6 Схема изоляции контейнера для хранения жидкого водорода
Вакуумная изоляция уменьшает передачу теплоты теплопроводностью, поскольку теплопроводность газа сильно уменьшается при уменьшении его давления. Несколько отражающих экранов, окружающих внутренний контейнер (так называемая многослойная изоляция), могут уменьшить передачу теплоты излучением.
Значительное сокращение скорости испарения водорода, связанного с потоком теплоты q, может быть достигнуто путем охлаждения экранов изоляции вентилируемым водородным паром. Это уменьшает температурный перепад между экранами изоляции, что приводит к меньшему потоку теплоты. Такой метод используется прежде всего в больших контейнерах.
Хранение водорода в связанном виде
Хранение водорода в гидридах металлов
Металлические гидриды состоят из металлических атомов, которые составляют ведущую решетку, и водородных атомов, которые находятся в своеобразных ловушках, представляющих собой дефекты решетки или вакансию. Ловушка бывает дефектом строки, в котором могут накопиться атомы водорода. Такая дефектная строка увеличивает напряжение решетки, особенно если два смежных атома повторно объединяются, чтобы формировать молекулярный водород. С этого момента адсорбция водорода увеличивает размер решеток, поэтому металл обычно используют в виде порошка, чтобы предотвратить растрескивание крупных металлических частиц.