в ассемблере что это
Что такое ассемблер и нужно ли его изучать
Этому языку уже за 70, но на пенсию он пока не собирается.
Есть традиция начинать изучение программирования с вывода на экран строки «Hello world!». На языке Python, например, это всего одна команда:
Всё просто, понятно и красиво! Но есть язык программирования, в котором, чтобы получить тот же результат, нужно написать солидный кусок кода:
Это ассемблер. Только не нужно думать, что он плох. Просто Python — это язык высокого уровня, а ассемблер — низкого. Одна команда Python при выполнении вызывает сразу несколько операций процессора, а каждая команда ассемблера — всего одну операцию.
Сложно? Давайте разбираться.
Программист, консультант, специалист по документированию. Легко и доступно рассказывает о сложных вещах в программировании и дизайне.
Немного о процессорах и машинном языке
Чтобы объяснить, что такое язык ассемблера, начнём с того, как вообще работает процессор и на каком языке с ним можно «разговаривать».
Процессор — это электронное устройство (сейчас крошечная микросхема, а раньше процессоры занимали целые залы), не понимающее слов и цифр. Он реагирует только на два уровня напряжения: высокий — единица, низкий — ноль. Поэтому каждая процессорная команда — это последовательность нулей и единиц: 1 — есть импульс, 0 — нет.
Для работы с процессором используется машинный язык. Он состоит из инструкций, записанных в двоичном коде. Каждая инструкция определяет одну простую машинную операцию: арифметическую над числами, логическую (поразрядную), ввода-вывода и так далее.
Например, для Intel 8088 инструкция 0000001111000011B — это операция сложения двух чисел, а 0010101111000011B — вычитания.
Программировать на машинном языке нелегко — приходится работать с огромными цепочками нулей и единиц. Трудно написать или проверить такую программу, а уж тем более разобраться в чужом коде.
Поэтому много лет назад был создан язык ассемблера, в котором коды операций обозначались буквами и сокращениями английских слов, отражающих суть команды. Например, команда mov ax, 6 означает: «переместить число 6 в ячейку памяти AX».
Когда и как был создан ассемблер?
Это произошло ещё в сороковых годах прошлого века. Ассемблер был создан для первых ЭВМ на электронных лампах, программы для которых писали на машинном языке. А так как памяти у компьютеров было мало, то команды вводили, переключая тумблеры и нажимая кнопки. Даже несложные вычисления занимали много времени.
Проблему решили, когда ЭВМ научились хранить программы в памяти. Уже в 1950 году была разработана первая программа-транслятор, которая переводила в машинный код программы, написанные на понятном человеку языке. Эту программу назвали программой-сборщиком, а язык — языком ассемблера (от англ. assembler — сборщик).
Появление ассемблера сильно облегчило жизнь программистов. Они смогли вместо двоичных кодов использовать команды, состоящие из близких к обычному языку условных обозначений. Кроме того, ассемблер позволил уменьшить размеры программ — для машин того времени это было важно.
Как устроен язык ассемблера?
Ассемблер можно считать языком второго поколения, если за первый принять машинный язык. Он работает непосредственно с процессором, и каждая его команда — это инструкция процессора, а не операционной или файловой системы. Перевод языка ассемблера в машинный код называется ассемблированием.
Коды операций в языке ассемблера мнемонические, то есть удобные для запоминания:
Регистрам и ячейкам памяти присваиваются символические имена, например:
EAX, EBX, AX, AH — имена для регистров;
meml — имя для ячейки памяти.
Например, так выглядит команда сложения чисел из регистров AX и BX:
А это команда вычитания чисел из регистров AX и BX:
Кроме инструкций, в языке ассемблера есть директивы — команды управления компилятором, то есть программой-ассемблером.
Вот некоторые из них:
Не думайте, что ассемблер — всего лишь набор инструкций процессора с удобной для программиста записью. Это полноценный язык программирования, на котором можно организовать циклы, условные переходы, процедуры и функции.
Вот, например, код, на ассемблере, выводящий на экран цифры от 1 до 10:
Здесь действие будет выполняться в цикле — как, например, в циклах for или do while в языках высокого уровня.
Единого стандарта для языков ассемблера нет. В работе с процессорами Intel разработчики придерживаются двух синтаксисов: Intel и AT&T. Ни у того ни у другого нет особых преимуществ: AT&T — стандартный синтаксис в Linux, а Intel используется в мире Microsoft.
Одна и та же команда в них выглядит по-разному.
Например, в синтаксисе Intel:
mov eax, ebx — команда перемещает данные из регистра eax в регистр ebx.
В синтаксисе AT&T эта команда выглядит так:
Почему для разных семейств процессоров нужен свой ассемблер?
Дело в том, что у каждого процессора есть набор характеристик — архитектура. Это его конструкция и принцип работы, а также регистры, адресация памяти и используемый набор команд. Если у процессоров одинаковая архитектура, то говорят, что они из одного семейства.
Так как наборы команд для разных архитектур процессоров отличаются друг от друга, то и программы на ассемблере, написанные для одних семейств, не будут работать на процессорах из других семейств. Поэтому ассемблер называют машинно-ориентированным языком.
Кому и зачем нужен язык ассемблера?
Даже из нашего примера «Hello, World!» видно, что ассемблер не так удобен в разработке, как языки высокого уровня. Больших программ на этом языке сейчас никто не пишет, но есть области, где он незаменим:
Если вы хотите разрабатывать новые микропроцессоры или стать реверс-инженером, то есть смысл серьёзно заняться изучением языка ассемблера.
Востребованы ли программисты на ассемблере сегодня?
Конечно. Хотя на сайтах по поиску работу вы вряд ли найдёте заявки от работодателей с заголовками: «Нужен программист на ассемблере», зато там много таких, где требуется знание ассемблера дополнительно к языкам высокого уровня: C, C++ или Python. Это вакансии реверс-инженеров, специалистов по компьютерной безопасности, разработчиков драйверов и программ для микроконтроллеров/микропроцессоров, системных программистов и другие.
Предлагаемая зарплата — обычная в сфере IT: 80–300 тысяч рублей в зависимости от квалификации и опыта. Вот, например, вакансия реверс-инженера на HeadHunter, где требуется знание ассемблера:
Стоит ли начинать изучение программирования с языка ассемблера?
Нет, так делать не нужно. Для этого есть несколько причин:
Поэтому, даже если вы решили заняться профессией, связанной с ассемблером, изучение программирования вам лучше начинать с языка высокого уровня. А уж ассемблер после него будет выучить несложно.
обложка: Полина Суворова для Skillbox Media
Микропроцессор, выпущенный компанией Intel в 1979 году. Использовался в оригинальных компьютерах IBM PC.
Данные, которые обрабатываются командой — грамматической конструкцией языка программирования, обозначающей аргумент операции.
Центральная часть операционной системы, координирующая доступ приложений к процессорному времени, памяти, внешним устройствам.
Программа, которая обеспечивает загрузку самой OC сразу после включения компьютера.
Почему Ассемблер — это круто, но сложно
Потому что это круто. Но сложно.
Есть высокоуровневые языки — это те, где вы говорите if — else, print, echo, function и так далее. «Высокий уровень» означает, что вы говорите с компьютером более-менее человеческим языком. Другой человек может не понять, что именно у вас написано в коде, но он хотя бы сможет прочитать слова.
Но сам компьютер не понимает человеческий язык. Компьютер — это регистры памяти, простые логические операции, единицы и нули. Поэтому прежде чем ваша программа будет исполнена процессором, ей нужен переводчик — программа, которая превратит высокоуровневый язык программирования в низкоуровневый машинный код.
Ассемблер — это собирательное название языков низкого уровня: код всё ещё пишет человек, но он уже гораздо ближе к принципам работы компьютера, чем к принципам мышления человека.
Вариантов Ассемблера довольно много. Но так как все они работают по одинаковому принципу и используют (в основном) одинаковый синтаксис, мы будем все подобные языки называть общим словом «Ассемблер».
Как мыслит процессор
Чтобы понять, как работает Ассемблер и почему он работает именно так, нам нужно немного разобраться с внутренним устройством процессора.
Кроме того, что процессор умеет выполнять математические операции, ему нужно где-то хранить промежуточные данные и служебную информацию. Для этого в самом процессоре есть специальные ячейки памяти — их называют регистрами.
Регистры бывают разного вида и назначения: одни служат, чтобы хранить информацию; другие сообщают о состоянии процессора; третьи используются как навигаторы, чтобы процессор знал, куда идти дальше, и так далее. Подробнее — в расхлопе ↓
Общего назначения. Это 8 регистров, каждый из которых может хранить всего 4 байта информации. Такой регистр можно разделить на 2 или 4 части и работать с ними как с отдельными ячейками.
Указатель команд. В этом регистре хранится только адрес следующей команды, которую должен выполнить процессор. Вручную его изменить нельзя, но можно на него повлиять различными командами переходов и процедур.
Регистр флагов. Флаг — какое-то свойство процессора. Например, если установлен флаг переполнения, значит процессор получил в итоге такое число, которое не помещается в нужную ячейку памяти. Он туда кладёт то, что помещается, и ставит в этот флаг цифру 1. Она — сигнал программисту, что что-то пошло не так.
Флагов в процессоре много, какие-то можно менять вручную, и они будут влиять на вычисления, а какие-то можно просто смотреть и делать выводы. Флаги — как сигнальные лампы на панели приборов в самолёте. Они что-то означают, но только самолёт и пилот знают, что именно.
Сегментные регистры. Нужны были для того, чтобы работать с оперативной памятью и получать доступ к любой ячейке. Сейчас такие регистры имеют по 32 бита, и этого достаточно, чтобы получить 4 гигабайта оперативки. Для программы на Ассемблере этого обычно хватает.
Так вот: всё, с чем работает Ассемблер, — это команды процессора, переменные и регистры.
Здесь нет привычных типов данных — у нас есть только байты памяти, в которых можно хранить что угодно. Даже если вы поместите в ячейку какой-то символ, а потом захотите работать с ним как с числом — у вас получится. А вместо привычных циклов можно просто прыгнуть в нужное место кода.
Команды Ассемблера
Каждая команда Ассемблера — это команда для процессора. Не операционной системе, не файловой системе, а именно процессору — то есть в самый низкий уровень, до которого может дотянуться программист.
Любая команда на этом языке выглядит так:
Метка — это имя для фрагмента кода. Например, вы хотите отдельно пометить место, где начинается работа с жёстким диском, чтобы было легче читать код. Ещё метка нужна, чтобы в другом участке программы можно было написать её имя и сразу перепрыгнуть к нужному куску кода.
Команда — служебное слово для процессора, которое он должен выполнить. Специальные компиляторы переводят такие команды в машинный код. Это сделано для того, чтобы не запоминать сами машинные команды, а использовать вместо них какие-то буквенные обозначения, которые проще запомнить. В этом, собственно, и выражается человечность Ассемблера: команды в нём хотя бы отдалённо напоминают человеческие слова.
Операнды отвечают за то, что именно будут делать команды: какие ячейки брать для вычислений, куда помещать результат и что сделать с ним дополнительно. Операндом могут быть названия регистров, ячейки памяти или служебные части команд.
Комментарий — это просто пояснение к коду. Его можно писать на любом языке, и на выполнение программы он не влияет. Примеры команд:
mov eax, ebx ; Пересылаем значение регистра EBX в регистр EAX mov x, 0 ; Записываем в переменную x значение 0 add eax, х ; Складываем значение регистра ЕАХ и переменной х, результат отправится в регистр ЕАХ
Здесь нет меток, первыми идут команды (mov или add), а за ними — операнды и комментарии.
Пример: возвести число в куб
Если нам понадобится вычислить х³, где х занимает ровно один байт, то на Ассемблере это будет выглядеть так.
Первый вариант
mov al, x ; Пересылаем x в регистр AL imul al ; Умножаем регистр AL на себя, AX = x * x movsx bx, x ; Пересылаем x в регистр BX со знаковым расширением imul bx ; Умножаем AX на BX. Результат разместится в DX:AX
Второй вариант
mov al, x ; Пересылаем x в регистр AL imul al ; Умножаем регистр AL на себя, AX = x * x cwde ; Расширяем AX до EAX movsx ebx, x ; Пересылаем x в регистр EBX со знаковым расширением imul ebx ; Умножаем EAX на EBX. Поскольку x – 1-байтовая переменная, результат благополучно помещается в EAX
На любом высокоуровневом языке возвести число в куб можно одной строкой. Например:
на худой конец x = x*x*x.
Хитрость в том, что когда каждая из этих строк будет сведена к машинному коду, этого кода может быть и 5 команд, и 10, и 50, и даже 100. Чего стоит вызов объекта Math и его метода pow: только на эту служебную операцию (ещё до самого возведения в куб) может уйти несколько сотен и даже тысяч машинных команд.
А на Ассемблере это гарантированно пять команд. Ну, или как реализуете.
Почему это круто
Ассемблер позволяет работать с процессором и памятью напрямую — и делать это очень быстро. Дело в том, что в Ассемблере почти не тратится зря процессорное время. Если процессор работает на частоте 3 гигагерца — а это примерно 3 миллиарда процессорных команд в секунду, — то очень хороший код на Ассемблере будет выполнять примерно 2,5 миллиарда команд в секунду. Для сравнения, JavaScript или Python выполнят в тысячу раз меньше команд за то же время.
Ещё программы на Ассемблере занимают очень мало места в памяти. Именно поэтому на этом языке пишут драйверы, которые встраивают прямо в устройства, или управляющие программы, которые занимают несколько килобайт. Например, программа, которая находится в брелоке сигнализации и управляет безопасностью всей машины, занимает всего пару десятков килобайт. А всё потому, что она написана для конкретного процессора и использует его возможности на сто процентов.
Справедливости ради отметим, что современные компиляторы С++ дают машинный код, близкий по быстродействию к Ассемблеру, но всё равно немного уступают ему.
Почему это сложно
Для того, чтобы писать программы на Ассемблере, нужно очень любить кремний:
Теперь добавьте к этому отсутствие большинства привычных библиотек для работы с чем угодно, сложность чтения текста программы, медленную скорость разработки — и вы получите полное представление о программировании на Ассемблере.
Для чего всё это
Ассемблер незаменим в таких вещах:
На самом деле на Ассемблере можно даже запилить свой сайт с форумом, если у программиста хватает квалификации. Но чаще всего Ассемблер используют там, где даже скорости и возможностей C++ недостаточно.
Как писать на ассемблере в 2018 году
Статья посвящена языку ассемблер с учетом актуальных реалий. Представлены преимущества и отличия от ЯВУ, произведено небольшое сравнение компиляторов, скрупулёзно собрано значительное количество лучшей тематической литературы.
1. Язык. Преимущества и отличия от ЯВУ
Ассемблер (Assembly) — язык программирования, понятия которого отражают архитектуру электронно-вычислительной машины. Язык ассемблера — символьная форма записи машинного кода, использование которого упрощает написание машинных программ. Для одной и той же ЭВМ могут быть разработаны разные языки ассемблера. В отличие от языков высокого уровня абстракции, в котором многие проблемы реализации алгоритмов скрыты от разработчиков, язык ассемблера тесно связан с системой команд микропроцессора. Для идеального микропроцессора, у которого система команд точно соответствует языку программирования, ассемблер вырабатывает по одному машинному коду на каждый оператор языка. На практике для реальных микропроцессоров может потребоваться несколько машинных команд для реализации одного оператора языка.
Язык ассемблера обеспечивает доступ к регистрам, указание методов адресации и описание операций в терминах команд процессора. Язык ассемблера может содержать средства более высокого уровня абстракции: встроенные и определяемые макрокоманды, соответствующие нескольким машинным командам, автоматический выбор команды в зависимости от типов операндов, средства описания структур данных. Главное достоинство языка ассемблера — «приближенность» к процессору, который является основой используемого программистом компьютера, а главным неудобством — слишком мелкое деление типовых операций, которое большинством пользователей воспринимается с трудом. Однако язык ассемблера в значительно большей степени отражает само функционирование компьютера, чем все остальные языки.
И хотя драйвера и операционные системы сейчас пишут на Си, но Си при всех его достоинствах — язык высокого уровня абстракции, скрывающий от программиста различные тонкости и нюансы железа, а ассемблер — язык низкого уровня абстракции, прямо отражающий все эти тонкости и нюансы.
Для успешного использования ассемблера необходимы сразу три вещи:
Оптимальной можно считать программу, которая работает правильно, по возможности быстро и занимает, возможно, малый объем памяти. Кроме того, ее легко читать и понимать; ее легко изменить; ее создание требует мало времени и незначительных расходов. В идеале язык ассемблера должен обладать совокупностью характеристик, которые бы позволяли получать программы, удовлетворяющие как можно большему числу перечисленных качеств.
На языке ассемблера пишут программы или их фрагменты в тех случаях, когда критически важны:
Языки программирования высокого уровня абстракции разрабатывались с целью возможно большего приближения способа записи программ к привычным для пользователей компьютеров тех или иных форм записи, в частности математических выражений, а также чтобы не учитывать в программах специфические технические особенности отдельных компьютеров. Язык ассемблера разрабатывается с учетом специфики процессора, поэтому для грамотного написания программы на языке ассемблера требуется, в общем, знать архитектуру процессора используемого компьютера. Однако, имея в виду преимущественное распространение PC-совместимых персональных компьютеров и готовые пакеты программного обеспечения для них, об этом можно не задумываться, поскольку подобные заботы берут на себя фирмы-разработчики специализированного и универсального программного обеспечения.
2. О компиляторах
Какой ассемблер лучше?
Для процессора x86-x64, имеется более десятка различных ассемблер компиляторов. Они отличаются различными наборами функций и синтаксисом. Некоторые компиляторы больше подходят для начинающих, некоторые ― для опытных программистов. Некоторые компиляторы достаточно хорошо документированы, другие вообще не имеют документации. Для некоторых компиляторов разработано множеством примеров программирования. Для некоторых ассемблеров написаны учебные пособия и книги, в которых подробно рассматривается синтаксис, у других нет ничего. Какой ассемблер лучше?
Учитывая множество диалектов ассемблеров для x86-x64 и ограниченное количество времени для их изучения, ограничимся кратким обзором следующих компиляторов: MASM, TASM, NASM, FASM, GoASM, Gas, RosAsm, HLA.
Какую операционную систему вы бы хотели использовать?
Это вопрос, на который вы должны ответить в первую очередь. Самый многофункциональный ассемблер не принесет вам никакой пользы, если он не предназначен для работы под ту операционную систему, которую вы планируете использовать.
Windows | DOS | Linux | BSD | QNX | MacOS, работающий на процессоре Intel/AMD | |
---|---|---|---|---|---|---|
FASM | x | x | x | x | ||
GAS | x | x | x | x | x | x |
GoAsm | x | |||||
HLA | x | x | ||||
MASM | x | x | ||||
NASM | x | x | x | x | x | x |
RosAsm | x | |||||
TASM | x | x |
Поддержка 16 бит
Если ассемблер поддерживает DOS, то он поддерживает и 16-разрядные команды. Все ассемблеры предоставляют возможность писать код, который использует 16-разрядные операнды. 16-разрядная поддержка означает возможность создания кода, работающего в 16-разрядной сегментированной модели памяти (по сравнению с 32-разрядной моделью с плоской памятью, используемой большинством современных операционных систем).
Поддержка 64 бит
За исключением TASM, к которому фирма Borland охладела в середине нулевых, и, который не поддерживает в полном объеме даже 32-разрядные программы, все остальные диалекты поддерживают разработку 64-разрядных приложений.
Переносимость программ
Очевидно, что вы не собираетесь писать код на ассемблере x86-x64, который запускался бы на каком-то другом процессоре. Однако, даже на одном процессоре вы можете столкнуться с проблемами переносимости. Например, если вы предполагаете компилировать и использовать свои программы на ассемблере под разными операционными системами. NASM и FASM можно использовать в тех операционных системах, которые они поддерживают.
Предполагаете ли вы писать приложение на ассемблере и затем портировать, это приложение с одной ОС на другую с «перекомпиляцией» исходного кода? Эту функцию поддерживает диалект HLA. Предполагаете ли вы иметь возможность создавать приложения Windows и Linux на ассемблере с минимальными усилиями для этого? Хотя, если вы работаете с одной операционной системой и абсолютно не планируете работать в какой-либо другой ОС, тогда эта проблема вас не касается.
Поддержка высокоуровневых языковых конструкций
Некоторые ассемблеры предоставляют расширенный синтаксис, который обеспечивает языковые высокоуровневые структуры управления (типа IF, WHILE, FOR и так далее). Такие конструкции могут облегчить обучение ассемблеру и помогают написать более читаемый код. В некоторые ассемблеры встроены «высокоуровневые конструкции» с ограниченными возможностями. Другие предоставляют высокоуровневые конструкции на уровне макросов.
Никакой ассемблер не заставляет вас использовать какие-либо структуры управления или типы данных высокого уровня, если вы предпочитаете работать на уровне кодировки машинных команд. Высокоуровневые конструкции ― это расширение базового машинного языка, которое вы можете использовать, если найдете их удобными.
Качество документации
Удобство использования ассемблера напрямую связано с качеством его документации. Учитывая объем работы, который тратится для создания диалекта ассемблера, созданием документации для этого диалекта авторы компиляторов практически не заморачиваются. Авторы, расширяя свой язык, забывают документировать эти расширения.
В следующей таблице описывается качество справочного руководства ассемблера, которое прилагается к продукту:
Учебники и учебные материалы
Документация на самом ассемблере, конечно, очень важна. Еще больший интерес для новичков и других, изучающих язык ассемблера (или дополнительные возможности данного ассемблера), ― это наличие документации за пределами справочного руководства для языка. Большинство людей хотят, чтобы учебник, объясняющий, как программировать на ассемблере, не просто предоставляет синтаксис машинных инструкций и ожидает, что читателю объяснят, как объединять эти инструкции для решения реальных проблем.
MASM является лидером среди огромного объема книг, описывающих, как программировать на этом диалекте. Есть десятки книг, которые используют MASM в качестве своего ассемблера для обучения ассемблеру.
Большинство учебников по ассемблеру MASM/TASM продолжают обучать программированию под MS-DOS. Хотя постепенно появляются учебники, которые обучают программированию в Windows и Linux.
3. Литература и веб ресурсы
Beginners
Advanced
4. Практика
Итак, вы уже знаете, что такое ассемблер и с чем его едят. Вы запаслись парой/тройкой книг и веб мануалами, возможно определились и с компилятором… К сожалению уроки программирования выходят за рамки данной статьи, но для тех чей выбор пал на MASM/FASM можете воспользоваться следующими макетами:
Желаем вам, друзья, значительных достижений и новых знаний в 2018 году!
С уважением
Михаил Смоленцев MiklIrk (Иркутский государственный университет путей сообщения),
Алексей Гриценко expressrus (Донской государственный технический университет).
Ps1: Уважаемый, Хабрахабр! Добавьте в ваш редактор подсветку ассемблера (Intel-синтаксис), это пригодится для будущих статей!