что обеспечивает энергией клетку
Энергия в клетке. Использование и хранение
Всем привет! Эту статью я хотел посвятить клеточному ядру и ДНК. Но перед этим нужно затронуть то, как клетка хранит и использует энергию (спасибо spidgorny). Мы будем касаться вопросов связанных с энергией почти везде. Давайте заранее в них разберемся.
Из чего можно получать энергию? Да из всего! Растения используют световую энергию. Некоторые бактерии тоже. То есть органические вещества синтезируются из неорганических за счет световой энергии. + Есть хемотрофы. Они синтезируют органические вещества из неорганических за счет энергии окисления аммиака, сероводорода и др. веществ. А есть мы с вами. Мы — гетеротрофы. Кто это такие? Это те, кто не умеет синтезировать органические вещества из неорганических. То есть хемосинтез и фотосинтез, это не для нас. Мы берем готовую органику (съедаем). Разбираем ее на кусочки и либо используем, как строительный материал, либо разрушаем для получения энергии.
Что конкретно мы можем разбирать на энергию? Белки (сначала разбирая их на аминокислоты), жиры, углеводы и этиловый спирт (но это по желанию). То есть все эти вещества могут быть использованы, как источники энергии. Но для ее хранения мы используем жиры и углеводы. Обожаю углеводы! В нашем теле основным запасающим углеводом является гликоген.
Он состоит из остатков глюкозы. То есть это длинная, разветвленная цепочка, состоящая из одинаковых звеньев (глюкозы). При необходимости в энергии мы отщепляем по одному кусочку с конца цепи и окисляя его получаем энергию. Такой способ получения энергии характерен для всех клеток тела, но особенно много гликогена в клетках печени и мышечной ткани.
Теперь поговорим о жире. Он хранится в специальных клетках соединительной ткани. Имя им — адипоциты. По сути это клетки с огромной жировой каплей внутри.
При необходимости, организм достает жир из этих клеток, частично расщепляет и транспортирует. По месту доставки происходит окончательное расщепление с выделением и преобразованием энергии.
Довольно популярный вопрос: «Почему нельзя хранить всю энергию в виде жира, или гликогена?»
У этих источников энергии разное назначение. Из гликогена энергию можно получить довольно быстро. Его расщепление начинается почти сразу после начала мышечной работы, достигая пика к 1-2 минуте. Расщепление жиров протекает на несколько порядков медленней. То есть если вы спите, или медленно куда-то идете — у вас постоянный расход энергии, и его можно обеспечить расщепляя жиры. Но как только вы решите ускориться (упали сервера, побежали поднимать), резко потребуются много энергии и быстро ее получить расщепляя жиры не получится. Тут нам и нужен гликоген.
Есть еще одно важное различие. Гликоген связывает много воды. Примерно 3 г воды на 1 г гликогена. То есть, для 1 кг гликогена это уже 3 кг воды. Не оптимально… С жиром проще. Молекулы липидов (жиры=липиды), в которых запасается энергия не заряжены, в отличие от молекул воды и гликогена. Такие молекулы называется гидрофобными (дословно, боящимися воды). Молекулы воды же поляризованы. Примерно так это выглядит.
По сути, положительно заряженные атомы водорода взаимодействуют с отрицательно заряженными атомами кислорода. Получается стабильное и энергетически выгодное состояние.
Теперь представим молекулы липидов. Они не заряжены и не могут нормально взаимодействовать с поляризованными молекулами воды. Поэтому смесь липидов с водой энергетически невыгодна. Молекулы липидов не способны адсорбировать воду, как это делает гликоген. Они «кучкуются» в так называемые липидные капли, окружаются мембраной из фосфолипидов (одна их сторона заряжена и обращена к воде снаружи, вторая — не заряжена и смотрит на липиды капли). В итоге, у нас есть стабильная система, эффективно хранящая липиды и ничего лишнего.
Окей, мы разобрались с тем, в каких формах хранится энергия. А что с ней происходит дальше? Вот отщепили мы молекулу глюкозы от гликогена. Превратили ее в энергию. Что это значит?
Сделаем небольшое отступление.
Так вот в организме есть специальные соединения, макроэрги, которые способны накапливать и передавать энергию в ходе реакции. В их составе есть одна, или несколько химических связей, в которых и накапливается эта энергия. Теперь можно вернуться к глюкозе. Энергия выделившаяся при ее распаде запасется в связях этих макроэргов.
Разберем на примере.
Самым распространенным макроэргом (энергетической валютой) клетки является АТФ (Аденозинтрифосфат).
Выглядит примерно так.
В его состав входит азотистое основание аденин (одно из 4, используемых для кодирования информации в ДНК), сахар рибоза и три остатка фосфорной кислоты (поэтому и АденозинТРИфосфат). Именно в связях между остатками фосфорной кислоты накапливается энергия. При отщеплении одного остатка фосфорной кислоты образуется АДФ (АденозинДИфосфат). АДФ может выделять энергию, отрывая еще один остаток и превращаясь в АМФ (АденозинМОНОфосфат). Но эффективность отщепленная второго остатка намного ниже. Поэтому, обычно, организм стремится из АДФ снова получить АТФ. Происходит это примерно так. При распаде глюкозы, выделяющаяся энергия тратится на образование связи между двумя остатками фосфорной кислоты и образование ATP. Процесс многостадийный и пока мы его опустим.
Получившийся АТФ является универсальным источником энергии. Он используется везде, начиная от синтеза белка (для соединения аминокислот нужна энергия), заканчивая мышечной работой. Моторные белки, осуществляющие мышечное сокращение используют энергию, запасенную в АТФ, для изменения своей конформации. Изменение конформации это переориентация одной части большой молекулы относительно другой. Выглядит примерно так.
То есть химическая энергия связи переходит в механическую энергию. Вот реальные примеры белков, использующих АТФ для осуществления работы.
Знакомьтесь, это миозин. Моторный белок. Он осуществляет перемещение крупных внутриклеточных образований и участвует в сокращении мышц. Обратите внимание, у него имеется две «ножки». Используя энергию запасенную в 1 молекуле АТФ он осуществляет одно конформационное изменение, по сути один шаг. Самый наглядный пример перехода химической энергии АТФ в механическую.
Второй пример — Na/K насос. На первом этапе он связывает три молекулы Na и одну АТФ. Используя энергию АТФ, он меняет конформацию, выбрасывая Na из клетки. Затем он связывает две молекулы калия и, возвращаясь к исходной конформации, переносит калий в клетку. Штука крайне важная, позволяет поддерживать уровень внутриклеточного Na в норме.
А если серьезно, то:
Пауза. Зачем нам АТФ? Почему мы не можем использовать запасенную в глюкозе энергию напрямую? Банально, если окислить глюкозу до CO2 за один раз, мгновенно выделится экстремально много энергии. И большая ее часть рассеется в виде тепла. Поэтому реакция разбивается на стадии. На каждой выделяется немного энергии, она запасается, и реакция продолжается пока вещество полностью не окислиться.
Подитожу. Запасается энергия в жирах и углеводах. Из углеводов ее можно извлечь быстрее, но в жирах можно запасти больше. Для проведения реакций клетка использует высокоэнергетические соединения, в которых запасается энергия распада жиров, углеводов и тд… АТФ — основное такое соединение в клетке. По сути, бери и используй. Однако не единственное. Но об этом позже.
Энергетика живой клетки
Преобразование энергии в животной клетке
Неспособные к фотосинтезу клетки (например, человека) получают энергию из пищи, которой служит или биомасса растений, созданная в результате фотосинтеза, или биомасса других живых существ, питающихся растениями, или останки любых живых организмов.
Питательные вещества (белки, жиры и углеводы) преобразуются животной клеткой в ограниченный набор низкомолекулярных соединений – органических кислот, построенных из атомов углерода, которые с помощью специальных молекулярных механизмов окисляются до углекислоты и воды. При этом освобождается энергия, она аккумулируется в форме электрохимической разности потенциалов на мембранах и используется для синтеза АТФ или напрямую для совершения определенных видов работы.
История изучения проблем преобразования энергии в животной клетке, как и история фотосинтеза, насчитывает более двух веков.
У аэробных организмов окисление углеродных атомов органических кислот до углекислого газа и воды протекает с помощью кислорода и называется внутриклеточным дыханием, которое происходит в специализированных частицах – митохондриях. Трансформация энергии окисления осуществляется ферментами, расположенными в строгом порядке во внутренних мембранах митохондрий. Эти ферменты составляют так называемую дыхательную цепь и работают как генераторы, создавая разность электрохимических потенциалов на мембране, за счет которой синтезируется АТФ, подобно тому, как это происходит при фотосинтезе.
Основная задача и дыхания и фотосинтеза — поддерживать соотношение АТФ/АДФ на определенном уровне, далеком от термодинамического равновесия, что и позволяет АТФ служить донором энергии, смещая равновесие тех реакций, в которых он участвует.
Основными энергетическими станциями живых клеток служат митохондрии — внутриклеточные частицы размером 0,1–10μ, покрытые двумя мембранами. В митохондриях свободная энергия окисления продуктов питания превращается в свободную энергию АТФ. Когда АТФ соединяется с водой, при нормальных концентрациях реагирующих веществ, выделяется свободная энергия порядка 10 ккал/моль.
Лекция. Обеспечение клеток энергией
1. Жизнедеятельность всех организмов возможна только при наличии в них энергии. По способу получения энергии все клетки и организмы подразделяются на две группы: автотрофы и гетеротрофы.
Гетеротрофные организмы по способу получения пищи подразделяются на голозойных (животные), захватывающих твердые частицы, и осмотрофных (грибы, бактерии), питающихся растворенными веществами.
Многообразные гетеротрофные организмы способны в совокупности разлагать все вещества, которые синтезируются автотрофами, а также минеральные вещества, синтезированные в результате производственной деятельности людей. Гетеротрофные организмы совместно с автотрофами составляют на Земле единую биологическую систему, объединенную трофическими отношениями.
Автотрофы— организмы, питающиеся (т. е. получающие энергию) за счет неорганических соединений это некоторые бактерии и все зеленые растения. Автотрофы разделяются на хемотрофов и фототрофов.
Хемотрофы— организмы, использующие энергию, освобождающуюся при окислительно-восстановительных реакциях. К хемотрофам относятся нитрифицирующие (азотфиксирующие) бактерии, серные, водородные (метанобразующие), марганцевые, железообразующие и бактерии, использующие оксид углерода.
Фототрофы— только зеленые растения. Источником энергии для них является свет.
2. Фотосинтез(греч. phos — род. пад. photos — свет и synthesis — соединение) — образование при участии энергии света органических веществ клетками зеленых растений, а также некоторыми бактериями, процесс преобразования энергии света в химическую. Происходит с помощью пигментов (хлорофилла и некоторых др.) в тилакоидах хлоропластов и хроматофорах клеток. В основе фотосинтеза лежат окислительно-восстановительные реакции, в которых электроны переносятся от донора-восстановителя (вода, водород и др.) к акцептору (лат. acceptor — приемщик) — диоксиду углерода, ацетату с образованием восстановленных соединений — углеводов и выделением кислорода, если окисляется вода.
Фотосинтезирующие бактерии, использующие иные, чем вода, доноры, кислород не выделяют.
В составе хлоропластов высших растений, водорослей и цианобактерий функционируют две фотосистемы разного строения и состава. При поглощении квантов света пигментами (реакционным центром — комплексом хлорофилла с белком, который поглощает свет с длиной волны 680 нм — Р680) фотосистемы II происходит перенос электронов от воды к промежуточному акцептору и через цепь переносчиков к реакционному центру фотосистемы I. И этой фотосистеме реакционным центром явит пен молекулы хлорофилла в комплексе с особым бел-КОМ, который поглощает свет с длиной волны 700 нм — Р700. В молекулах хлорофилла Ф1 существуют «дыры» — незаполненные места электронов, перешедших в ПЛДФН. Эти «дыры» заполняются электронами, образовавшимися в процессе функционирования ФИ. То есть фотосистема II поставляет электроны для фотосистемы I, которые расходуются в ней на восстановление НАДФ + и НАДФН. По пути движения возбужденных светом электронов фотосистемы II к конечному акцептору — хлорофиллу фотосистемы I происходит фосфорилирование АДФ в богатую энергией АТФ. Таким образом, энергия света запасается в молекулах АТФ и расходуется далее для синтеза углеводов, белков, нуклеиновых кислот и иных жизненных процессов растений, а через них и жизнедеятельности всех организмов, питающихся растениями.
Темновые реакции, или реакции фиксации углерода,не связанные со светом, осуществляются в строме хлоропластов. Ключевое место в них занимает фиксация углекислоты и превращение углерода в углеводы. Эти реакции носят циклический характер, так как часть промежуточных углеводов претерпевает процесс конденсации и перестроек до рибулозодифосфата — первичного акцептора С02, что обеспечивает непрерывную работу цикла. Впервые этот процесс описал американский биохимик Мэлвин Кальвин
Превращение неорганического соединения С02 в органические соединения — углеводы, в химических связях которых запасается солнечная энергия, происходит с помощью сложного фермента — рибулозо-1,5-дифосфат-карбоксилазы. Он обеспечивает присоединение одной молекулы С02 к пятиуглеродному рибулозо-1,5-дифосфату, в результате чего образуется шестиуглеродное промежуточное короткоживущее соединение. Это соединение вследствие гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты, которая восстанавливается с использованием АТФ и НАДФН до трехуглеродных сахаров (триозофосфатов). Из них и образуется конечный продукт фотосинтеза — глюкоза.
Часть триозофосфатов, пройдя процессы конденсаций и перестроек, превращаясь сначала в рибулозомонофосфат, а затем и в рибулозодифосфат, включается снова в непрерывный цикл создания молекул глюкозы. Глюкоза может ферментативно полимеризоваться в
крахмал и целлюлозу — опорный полисахарид растений.
Особенностью фотосинтеза некоторых растений (сахарного тростника, кукурузы, амаранта) является первоначальное превращение углерода через четырехуглеродные соединения. Такие растения получили индекс С4-растения, а фотосинтез в них метаболизм углерода. С4-растения привлекают внимание исследователей высокой фотосинтетической продуктивностью.
Пути повышения продуктивности сельскохозяйственных растений:
— достаточное минеральное питание, которое может обеспечивать наилучший ход обменных процессов;
— более полная освещенность, которая может быть достигнута с помощью определенных норм посева растений с учетом потребления света светолюбивыми и теневыносливыми;
— нормальное количество углекислого газа в воздухе (при увеличении его содержания нарушается процесс дыхания растений, который связан с фотосинтезом);
— увлажненность почвы, соответствующая потребностям растений во влаге, зависящая от климатических и агротехнических условий.
Значение фотосинтеза в природе.
В результате фотосинтеза на Земле ежегодно образуется 150 млрд. т органического вещества и выделяется примерно 200 млрд. т свободного кислорода. Фотосинтез не только обеспечивает и поддерживает современный состав атмосферы Земли, необходимый для жизни ее обитателей, но и препятствует увеличению концентрации С02 в атмосфере, предотвращая перегрев нашей планеты (из-за так называемого парникового эффекта). Кислород, выделяемый при фотосинтезе, необходим для дыхания организмов и защиты их от губительного коротковолнового ультрафиолетового излучения.
Хемосинтез(позднегреч. chemeta — химия и греч. synthesis — соединение) — автотрофный процесс создания органического вещества бактериями, не содержащими хлорофилл. Осуществляется хемосинтез за счет окисления неорганических соединений: водорода, сероводорода, аммиака, оксида железа (II) и др. Усвоение С02 протекает, как и при фотосинтезе (цикл Кальвина), за исключением метанобразующих, гомо-ацетатных бактерий. Энергия, получаемая при окислении, запасается в бактериях в форме АТФ.
Хемосинтезирующим бактериям принадлежит исключительно важная роль в биогеохимических циклах химических элементов в биосфере. Жизнедеятельность нитрифицирующих бактерий представляет собой один из важнейших факторов плодородия почвы. Хемосинтезирующие бактерии окисляют соединения железа, марганца, серы и др.
Хемосинтез открыт русским микробиологом Сергеем Николаевичем Виноградским (1856—1953) в 1887 г.
3. Энергетический обмен
Три этапа энергетического обмена осуществляются при участии специальных ферментов в различных участках клеток и организмов.
Первый этап — подготовительный— протекает (у животных в органах пищеварения) под действием ферментов, расщепляющих молекулы ди- и полисахаридом, жиров, белков, нуклеиновых кислот на более мелкие молекулы: глюкозы, глицерина и жирных кислот, аминокислот, нуклеотидов. При этом выделяется небольшое количество энергии, рассеивающейся в виде тепла.
Второй этап — бескислородный, или неполного окисления.Он называется также анаэробным дыханием (брожением), или гликолизом. Ферменты гликолиза локализованы в жидкой части цитоплазмы — гиалоплазме. Расщеплению подвергается глюкоза, каждая молен у in которой ступенчато расщепляется и окисляется при участии ферментов до двух трехуглеродных молекул пировиноградной кислоты СН3 — СО — СООН, где СООН карбоксильная группа, характерная для органических кислот.
В этом превращении глюкозы последовательно участвуют девять ферментов. В процессе гликолиза про исходит окисление молекул глюкозы, т. е. теряются атомы водорода. Акцептором водорода (и электроном) в этих реакциях служат молекулы никотинамидаде ниндинуклеотида (НАД + ), которые похожи по струн туре на НАДФ + и отличаются только отсутствием остатка фосфорной кислоты в молекуле рибозы. При восстановлении пировиноградной кислоты за счет восстановленного НАД возникает конечный продукт гликолиза — молочная кислота. В реакциях расщепления глюкозы участвуют фосфорная кислота и АТФ.
В суммарном виде этот процесс выглядит так:
У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):
У некоторых микроорганизмов расщепление глюкозы без кислорода может завершиться образованием уксусной кислоты, ацетона и др. При этом во всех случаях распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ, в макроэргических связях которой сохраняется 40% энергии, остальная рассеивается в виде теплоты.
Третий этап энергетического обмена (стадия кислородного расщепления,или стадия аэробного дыхания) осуществляется в митохондриях. Этот этап связан с матриксом митохондрий и внутренней мембраной; в нем участвуют ферменты, представляющие собой ферментативный кольцевой «конвейер», названный циклом Кребса, по имени ученого, который его открыл. Еще этот сложный и длительный путь работы многих ферментов называют циклом трикарбоновых кислот.
, образуют воду. В цикле Кребса образуется С02, и в цепи переноса электронов — вода. При этом одна молекула глюкозы, полностью окисляясь при доступе кислорода до С02 и Н20, способствует образованию 38 молекул АТФ. Из вышесказанного следует, что основную роль в обеспечении клетки энергией играет кислородное расщепление органических веществ, или аэробное дыхание. При дефиците кислорода или полном его отсутствии происходит бескислородное, анаэробное, расщепление органических веществ; энергии такого процесса хватает только на создание двух молекул АТФ. Благодаря этому живые существа могут короткое время обходиться без кислорода.
Энергетические процессы в клетке
Энергетические процессы подразделяются на:
* процессы образования и накопления химической энергии, в частности, в виде синтеза аденозинтрифосфата (АТФ), а также креатинфосфата и гликогена
* процессы освобождения и утилизации энергии, превращения химической энергии в механическую, тепловую, электрическую и другие виды энергии. Процессы окисления составляют важную долю от процессов образования энергии.
Связанные понятия
Хромопротеиды (от греч. chroma — краска) — сложные белки, состоящие из простого белка и связанного с ним окрашенного небелкового компонента — простетической группы. Различают гемопротеины (содержат в качестве простетической группы гем), магнийпорфирины и флавопротеины (содержат производные изоаллоксазина). Хромопротеиды участвуют в таких процессах жизнедеятельности, как фотосинтез, клеточное дыхание и дыхание всего организма, транспорт кислорода и углекислого газа, окислительно-восстановительные.
Метаболи́зм (от греч. «превращение», «изменение») или обме́н веще́ств — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.
Электрохими́ческий градиéнт, или градиéнт электрохимического потенциáла, — совокупность градиента концентрации и мембранного потенциала, которая определяет направление движения ионов через мембрану. Состоит из двух составляющих: химического градиента (градиента концентрации), или разницы в концентрациях растворённого вещества по обе стороны мембраны, и электрического градиента (мембранного потенциала), или разницы зарядов, расположенных на противоположных сторонах мембраны. Градиент возникает вследствие.
Естествознание. 10 класс
Конспект урока
Конспект на интерактивный видео-урок
по предмету «Естествознание» для «10» класса
Урок № 24.Энергетика живой клетки
Перечень вопросов, рассматриваемых в теме:
Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов. Значение энергетического обмена – снабжение клетки энергией, которая необходима для жизнедеятельности.
Пластический обмен – это совокупность химических реакций образования (синтеза) из простых веществ с затратой энергии более сложные. Непосредственным поставщиком энергии в клетках выступает АТФ.
Фотосинтез – процесс образования органических веществ из неорганических (углекислого газа и воды) с использованием солнечной энергии. Проходит в два этапа: световая фаза (происходит улавливание и фиксация энергии света в АТФ) и темновая (связывание углекислого газа в молекулы глюкозы с затратой энергии АТФ).
Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды.
Основная и дополнительная литература по теме урока :
Обмен веществ. Портал открытая биология // Электронный доступ: https://biology.ru/textbook/content.html
Энергетика живой клетки. Научно-познавательный журнал «Познавайка» // Электронный доступ: http://www.poznavayka.org/biologiya/energiya-zhivoy-kletki/
Теоретический материал для самостоятельного изучения
Обязательным условием существования биологических систем являются потоки энергии. В этом заключается ключевое различие между живой и неживой природой. Энергия не хранится в клетке, а поступает извне. Ключевую роль в трансформации энергии обеспечивает клетка, как элементарная структура живого. Специальные биохимические механизмы трансформируют одни виды энергии в другие, для обеспечения необходимых функций клетки.
Некоторые виды микроорганизмов (хемоавтотрофы) приобрели способность к использованию энергии, выделяемой при окислении неорганических веществ.
Таким образом, из всего многообразия существующих форм энергии живые существа на нашей планете используют только две – световую и энергию химических связей.
Главный переносчик энергии в клетке
Световая энергия Солнца и энергия, заключённая в потребляемой пище, запасаются в особых бимолекулярных аккумуляторах – молекулах АТФ (аденозинтрифосфат). В молекулах АТФ энергия запасается в виде высокоэнергетических химических связях между остатками фосфорной кислоты, которая освобождается при отщеплении фосфата: АТФ → АДФ + Ф + E.
Выделяемая энергия используется клетками для процессов выработки тепла, мышечных сокращений (мышечная клетка), для проведения нервного импульса (нервные клетки) и т.п.
Обратный процесс образования АТФ с затратой энергии, получил название энергетический обмен.
Независимо от типа питания, универсальным аккумулятором энергии живых организмов выступают молекулы АТФ, где добытая энергия извне запасается в виде химических связей. Такая схожесть иллюстрирует единство происхождения всего живого.
Поступившие вместе с пищей (или в результате фотосинтеза) органические вещества расщепляются на более простые (катаболизм или диссимиляция), которые служат для постройки макромолекул органических соединений (анаболизм или ассимиляция). Эти процессы происходят в организме одновременно. Совокупность этих процессов получила название – метаболизм. В результате его организм осуществляет обмен веществом и энергией с окружающей средой. Наибольшее значение для энергетического обмена являются многостадийные реакции расщепления глюкозы.
На стадии гликолиза в цитоплазме клетки происходит ферментативное расщепление молекулы глюкозы с образованием более простой пировиноградной кислоты и молекул АТФ: С6Н12О6 + 2 АДФ + 2 Ф → 2С3Н4О3 + 4Н + + 2АТФ
Молекулы пировиноградной кислоты обладают значительной энергией, высвобождение которой происходит в митохондриях. В ходе так называемого клеточного дыхания (аэробного расщепления), вещество распадается на углекислый газ, который впоследствии выделяется из клетки и воду. По последним исследованиям, при этом образуется 30 молекул АТФ.
Суммарную реакцию окисления глюкозы можно представить следующим образом:
Некоторые микроорганизмы при недостатке кислорода расщепляют глюкозу в процессе анаэробного дыхания или брожения. В зависимости от конечных продуктов такого расцепления различают спиртовое брожение (с образование этанола), молочнокислое (молочная кислота). Последнее происходит и в мышцах, при недостатке кислорода, например во время длительной тренировки. Энергетический выход такого типа расщепления менее энергоэффективен.
Основным источником энергии для организмов является окисление глюкозы в митохондриях. При этом также может происходить окисление других органических соединений (белков, жиров), потребляемых, например, вместе с пищей.
Фотоавтотрофы имеют уникальные ферментативные системы, способные трансформировать энергию солнечного света в энергию химической связи. Процесс образования органических веществ из неорганических (углекислого газа и воды) с использованием солнечной энергии получил название фотосинтез. В растениях фотосинтезирующие комплексы сосредоточены в специальных органеллах – хлоропластах. Основной пигмент – хлорофилл – выполняет функцию световых «антенн», улавливая световые волны практически всех диапазонов, кроме зелёного. Стоит отметить, что это обуславливает окраску листьев растений.
В так называемой, световой фазе, кванты света выбивают электроны из молекулы хлорофилла, и он начинает передаваться по специальным белковым переносчикам, расположенных на мембране хлоропластов. Под действием света одновременно происходит разложение воды (фотолиз). В реакции высвобождается, в том числе катион водорода (Н + ), необходимый для последующего биосинтеза, который захватывает молекула НАДФ (никотинамидадениндинуклеотидфосфат): НАДФ + + Н + →НАДФ∙Н
Энергия возбуждённого электрона заряжает известный нам биологический катализатор АТФ и молекулу НАДФ – в этом заключается биологический смысл световой фазы фотосинтеза.
Дальнейший процесс может уже проходить без света. Сущность реакций темновой фазы можно выразить следующим уравнением: СО2 + НАДФ∙Н + АТФ = С6Н12О6 +АДФ + НАДФ +
Не сложно заметить, что выделяются вещества необходимые на начальном этапе фотосинтеза, что замыкает цикл. Энергия молекулярных аккумуляторов была использована для фиксации углекислого газа в энергию химических связей углевода.
Фотосинтез, таким образом, является процессом превращения одной (световой) формы энергии в другую(химическую). Вся энергия биосферы запускается благодаря этому процессу. Другими словами, фотосинтез является отражением космических потоков энергии. Помимо этого, фотосинтезирующие организмы не только обеспечивают первичный синтез органических соединений, но и создают условия необходимые для существования других живых организмов.
Взаимосвязь энергетического и пластического обмена
Не сложно заметить, что процессы аккумулирования энергии в молекулах АТФ (энергетический обмен) и использование запасённой энергии для синтеза необходимых веществ (белков, жиров, углеводов, нуклеиновых кислот) неразрывно связаны. Так синтез АТФ не возможен без разложения органических веществ, а синтез веществ клетки не возможен без энергии АТФ. Причём, заметим, что и фотосинтез представляет собой единство этих процессов: темновая фаза – пластический обмен, световая фаза – энергетический.
Оба процесса протекают одновременно и неотделимы друг от друга, обеспечивая жизнедеятельность организма. Таким образом, в клетках происходит трансформация вещества и энергии, которые лежат в основе существования жизни и непрерывного самообновления. Сходство процессов энергетического обмена в клетках всех живых организмов является доказательством единства их происхождения.
В клетках происходят одновременно процессы энергетического и пластического обмена, это лежит в основе сохранения жизни. Взаимообмен энергией и веществом между живой и неживой природой является иллюстрацией принципа единства и взаимосвязи материального мира.
Примеры и разбор решения заданий тренировочного модуля:
Задание 1. Выберите один ответ:
Пояснение: универсальной «разменной валютой» в энергетике живой клетки выступает АТФ. При его распаде выделяется энергия, которая расходуется на все жизненно важные процессы.
Задание 2. Исправьте ошибки, анализируя текст с позиции энергетического обмена:
В рационе питания человека помимо белков растительных и животных не обязательно должны присутствовать углеводы и жиры. Отсутствие жиров в пище не приводит к истощению. Человек толстеет, если употребляет в пищу избыточное количество углеводов. На сое и рисе можно прожить.
Ответ: В рационе питания человека помимо белков растительных и животных не обязательно должны присутствовать углеводы и жиры. Отсутствие жиров в пище не приводит к истощению. Человек толстеет, если употребляет в пищу много жиров. Исключительно на сое и рисе можно благополучно прожить.
Пояснение: с точки зрения энергетического обмена, наиболее энергоэффективными являются жиры. При этом, жиры, поступающие с пищей, используются в том числе, для построения многих важных соединений, например гормонов. «Быстрая» энергия углеводов в избыточном количестве может приводить к полноте. Употребление только растительного белка в пищу, по сравнению с животным, является менее энергоэффективным и при отсутствии других источников энергии может приводить к истощению организма.