что нужно сделать чтобы умножить дробь на дробь нужно
Умножение дробей: теория и практика
Понятие дроби
Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Существует два формата записи:
Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление — в 5 классе уже это знают.
Дроби могут быть двух видов:
Дробь называют правильной, когда ее числитель меньше знаменателя:
Неправильной — ту, у которой числитель больше знаменателя или равен ему:
Такое число называют смешанным, читают как «пять целых одна четвертая», а записывают так: 5 1\4.
Основные правила дробей
Умножение дробных чисел
Рассмотрим несколько вариантов умножения обыкновенных дробей.
Как умножить дробь на дробь
Числитель равен произведению числителей обеих дробей, а знаменатель равен произведению знаменателей:
Важно проверить возможность сокращения — так решать будет легче:
Как умножить смешанные дроби
Преобразовать смешанные числа в неправильные, перемножить числители и знаменатели, при необходимости сократить и перевести в смешанную дробь.
Как умножить дробь на натуральное число
Метод 1. Числитель умножить на натуральное число, а знаменатель оставить без изменения. Если в результате произведения получилась неправильная дробь, нужно выделить целую часть, то есть превратить неправильную в смешанную.
Метод 2. Знаменатель разделить на натуральное число, а числитель оставить прежним.
Этот способ будет удобнее предыдущего, если знаменатель делится на натуральное число без остатка.
Решение задач
Ребятам в 5 и 6 классе нужно практиковаться как можно чаще, чтобы решать такие примеры быстро и легко.
Задание 1. Выполнить умножение 2/17 на 5.
Как решаем: перемножим числитель и натуральное число.
Ответ:
Задание 2. Выполнить умножение 4/15 и 55/6.
Как решаем:
Ответ:
Задание 3. Выполнить умножение одной целой трех седьмых на шесть.
Как решаем:
Ответ:
Онлайн-курсы по математике для детей и подростков — прекрасный способ разобраться в новом материале и закрепить его на практике.
Умножение дробей
Умножение обыкновенных дробей рассмотрим в нескольких возможных вариантах.
Умножение обыкновенной дроби на дробь
Это наиболее простой случай, в котором нужно пользоваться следующими правилами умножения дробей.
Чтобы умножить дробь на дробь, надо:
Прежде чем перемножать числители и знаменатели проверьте нельзя ли сократить дроби. Сокращение дробей при расчётах значительно облегчит ваши вычисления.
Умножение дроби на натуральное число
Чтобы дробь умножить на натуральное число нужно числитель дроби умножить на это число, а знаменатель дроби оставить без изменения.
Если в результате умножения получилась неправильная дробь, не забудьте превратить её в смешанное число, то есть выделить целую часть.
Умножение смешанных чисел
Чтобы перемножить смешанные числа, надо вначале превратить их в неправильные дроби и после этого умножить по правилу умножения обыкновенных дробей.
Другой способ умножения дроби на натуральное число
Иногда при расчётах удобнее воспользоваться другим способом умножения обыкновенной дроби на число.
Чтобы умножить дробь на натуральное число нужно знаменатель дроби разделить на это число, а числитель оставить прежним.
Как видно из примера, этим вариантом правила удобнее пользоваться, если знаменатель дроби делится без остатка на натуральное число.
Умножение обыкновенных дробей: правила, примеры, решения
Еще одно действие, которое можно выполнять с обыкновенными дробями, – умножение. Мы попробуем разъяснить его основные правила при решении задач, покажем, как умножается обыкновенная дробь на натуральное число и как правильно выполнить умножение трех обыкновенных дробей и больше.
Как умножить одну обыкновенную дробь на другую
Запишем сначала основное правило:
Посмотрим на примере, как правильно применить это правило. Допустим, у нас есть квадрат, сторона которого равна одной числовой единице. Тогда площадь фигуры составит 1 кв. единицу. Если разделить квадрат на равные прямоугольники со сторонами, равными 1 4 и 1 8 числовой единицы, у нас получится, что он теперь состоит из 32 прямоугольников (потому что 8 · 4 = 32 ). Соответственно, площадь каждого из них будет равна 1 32 от площади всей фигуры, т.е. 1 32 кв. единицы.
Далее нам надо выделить цветом часть исходного квадрата так, как это сделано на рисунке:
5 8 · 3 4 = 5 · 3 8 · 4 = 15 32
Разберем решения нескольких задач на умножение обыкновенных дробей.
Решение
Все решение можно записать так:
7 11 · 9 8 = 7 · 9 11 · 8 = 63 88
Если в ответе у нас получилась сократимая дробь, нужно довести вычисление до конца и выполнить ее сокращение. Если же у нас получилась неправильная дробь, из нее надо выделить целую часть.
Решение
Cогласно изученному выше правилу, нам надо умножить числитель на числитель, а знаменатель на знаменатель. Запись решения будет выглядеть так:
4 15 · 55 6 = 4 · 55 15 · 6 = 220 90
Поясним, как это выглядит, используя данные конкретной задачи.
Решение
Запишем вычисления, исходя из правила умножения. У нас получится:
4 15 · 55 6 = 4 · 55 15 · 6
Далее мы можем просто сократить некоторые множители и получить следующее: .
Нам осталось подсчитать несложные произведения в числителе и знаменателе и выделить целую часть из получившейся в итоге неправильной дроби:
2 · 11 3 · 3 = 22 9 = 2 4 9
Числовое выражение, в котором имеет место умножение обыкновенных дробей, обладает переместительным свойством, то есть при необходимости мы можем изменить порядок следования множителей:
a b · c d = c d · a b = a · c b · d
Как перемножить обыкновенную дробь с натуральным числом
Запишем сразу основное правило, а потом попробуем объяснить его на практике.
Понять эту формулу легко, если вспомнить, что любое натуральное число может быть представлено в виде обыкновенной дроби со знаменателем, равным единице, то есть:
a b · n = a b · n 1 = a · n b · 1 = a · n b
Поясним нашу мысль конкретными примерами.
Решение
2 27 · 5 = 2 · 5 27 = 10 27
Ответ: 2 27 · 5 = 10 27
Когда мы перемножаем натуральное число с обыкновенной дробью, то часто приходится сокращать результат или представлять его как смешанное число.
Решение
Также мы могли сократить дробь с помощью разложения числителя и знаменателя на простые множители, и результат получился бы точно таким же.
Числовое выражение, в котором натуральное число умножается на дробь, также обладает свойством перемещения, то есть порядок расположения множителей не влияет на результат:
a b · n = n · a b = a · n b
Как выполнить умножение трех и более обыкновенных дробей
Мы можем распространить на действие умножения обыкновенных дробей те же свойства, которые характерны для умножения натуральных чисел. Это следует из самого определения данных понятий.
Благодаря знанию сочетательного и переместительного свойства можно перемножать три обыкновенные дроби и более. Допустимо переставлять множители местами для большего удобства или расставлять скобки так, как будет легче считать.
Покажем на примере, как это делается.
Перед тем, как начать умножение, мы можем немного облегчить себе задачу и разложить некоторые числа на простые множители для дальнейшего сокращения. Это будет проще, чем сокращать уже готовую дробь, получившуюся в результате.
1 · 12 · 3 · 5 20 · 5 · 7 · 8 = 1 · ( 2 · 2 · 3 ) · 3 · 5 2 · 2 · 5 · 5 · 7 ( 2 · 2 · 2 ) = 3 · 3 5 · 7 · 2 · 2 · 2 = 9 280
Решение
Дроби. Умножение и деление дробей.
Умножение обыкновенной дроби на дробь.
Чтобы перемножить обыкновенные дроби, необходимо умножить числитель на числитель (получим числитель произведения) и знаменатель на знаменатель (получим знаменатель произведения).
Формула умножения дробей:
Перед тем, как приступить к умножению числителей и знаменателей, необходимо проверить на возможность сокращения дроби. Если получится сократить дробь, то вам легче будет дальше производить расчеты.
Обратите внимание! Здесь не нужно искать общий знаменатель!!
Деление обыкновенной дроби на дробь.
Деление обыкновенной дроби на дробь происходит так: переворачиваете вторую дробь (т.е. меняете числитель и знаменатель местами) и после этого дроби перемножаются.
Формула деления обыкновенных дробей:
Умножение дроби на натуральное число.
Обратите внимание! При умножении дроби на натуральное число, числитель дроби умножается на наше натуральное число, а знаменатель дроби оставляем прежним. Если результатом произведения оказалась неправильная дробь, то обязательно выделите целую часть, превратив неправильную дробь в смешанную.
Деление дробей с участием натурального числа.
Это не так страшно, как кажется. Как и в случае со сложением, переводим целое число в дробь с единицей в знаменателе. Например:
Умножение смешанных дробей.
Правила умножения дробей (смешанных):
Обратите внимание! Чтобы умножить смешанную дробь на другую смешанную дробь, нужно, для начала, привести их к виду неправильных дробей, а далее умножить по правилу умножения обыкновенных дробей.
Второй способ умножения дроби на натуральное число.
Бывает более удобно использовать второй способ умножения обыкновенной дроби на число.
Обратите внимание! Для умножения дроби на натуральное число необходимо знаменатель дроби разделить на это число, а числитель оставить без изменения.
Из, приведенного выше, примера понятно, что этот вариант удобней для использования, когда знаменатель дроби делится без остатка на натуральное число.
Многоэтажные дроби.
В старших классах зачастую встречаются трехэтажные (или больше) дроби. Пример:
Чтобы привести такую дробь к привычному виду, используют деление через 2 точки:
Обратите внимание! В делении дробей очень важен порядок деления. Будьте внимательны, здесь легко запутаться.
Обратите внимание, например:
При делении единицы на любую дробь, результатом будет таже самая дробь, только перевернутая:
Практические советы при умножении и делении дробей:
1. Самым важным в работе с дробными выражениями является аккуратность и внимательность. Все вычисления делайте внимательно и аккуратно, сосредоточенно и чётко. Лучше запишите несколько лишних строчек в черновике, чем запутаться в расчетах в уме.
3. Все дроби сокращаем до тех пор, пока сокращать уже будет невозможно.
4. Многоэтажные дробные выражения приводим в вид обыкновенных, пользуясь делением через 2 точки.
5. Единицу на дробь делим в уме, просто переворачивая дробь.
Как умножить дробь на дробь?
Ответ или решение 2
В умножении дробей существует несколько возможных вариантов:
Умножение обыкновенных дробей
Давайте вспомним правило, что называется обыкновенной дробью.
Обыкновенные дроби – это записи вида m/n, где m и n – любые натуральные числа.
Приведем пример обыкновенной дроби: 1/2, 3/4, 1/5 и так далее.
Мы вспомнили понятие обыкновенной дроби, теперь вспомним правило умножения обыкновенных дробей.
Правило умножения обыкновенных дробей
Это одно из самых простых правил умножения дробей. Оно звучит так.
Чтобы умножить дробь на дробь, нужно проделать следующие действия:
1) 3/5 * 5/10 = (3 * 5)/(5 * 10) = 15/50, сократим полученную дробь на 5, получим:
2) 2/3 * 1/2 = (2 * 1)/(3 * 2) = 2/6, сократим дробь на 2, получим:
Перед тем как начать перемножать значения в числителе и знаменателе нужно проверить нельзя ли сократить на данном этапе умножения дробей нашу дробь. Это облегчит вычисления, которые придется выполнить при умножении.
1) 24/35 * 25/36 = (24 * 25)/(35 * 36); сократим перед умножением на 5: 25 в числителе дроби и 35 в знаменателе. А так же на 12: 24 в числителе дроби и 36 в знаменателе, получим:
(24 * 25)/(35 * 36) = (2 * 5)/(7 * 3) = 10/21.
Правила умножения дробей звучит следующим образом.
1. При умножении простой дроби на простую дробь, надо:
1) перемножить числители этих дробей и результат записать в числитель
2) перемножить их знаменатели и результат записать в знаменатель
2/5 * 3/ 4 = (2 * 3)/(5 * 4) = 6 /20 = 3/10.
2. Для умножения смешанных дробей, надо записать их в виде неправильных дробей, а затем воспользоваться правилом умножения простых дробей.
2 1/3 * 4 3/5 = 7/3 * 23/5 = (7 * 23)/ (3 * 5) = 161/15 = 10 11/15.