что нужно сделать чтобы уменьшить величину выходного напряжения выпрямителя
Схемотехника выпрямителей напряжения
В электрических приборах может использоваться постоянное или переменное напряжение. Энергию они получают от аккумулятора, батареи или электрической сети. В последнем случае речь идёт о переменном напряжении. Чтобы электроприбор мог его использовать, оно должно иметь строго определённые характеристики. Если же на выходе нужно получить постоянный ток, тогда устанавливается выпрямитель напряжения. Чтобы его правильно выбрать, необходимо знать, какие бывают выпрямители и как они работают.
Что такое выпрямитель
Это устройство на входе получает синусоидальный сигнал и преобразует его в постоянное напряжение нужной величины. Важно понимать, что результат на выходе в большинстве случаев не является ровной прямой линией. Фактически речь идёт о сигнале, который близок к ней. Его получают в результате сглаживания импульсов.
Обычно выпрямление напряжения происходит в два этапа. На первом поступаемый переменный ток преобразуют таким образом, чтобы он приобрел нужную амплитуду. Преобразования осуществляются с помощью трансформатора. На втором этапе происходит выравнивание колебаний напряжения.
Процесс выпрямления основан на явлении односторонней проводимости. При этом ток в одном направлении может проходить, а в другом — нет. Раньше для этого применяли вакуумные приборы или синхронизирующие машины, но сейчас подобные методы не используют. В современных выпрямляющих устройствах устанавливаются полупроводниковые диоды.
Каждое такое устройство состоит из трёх блоков: трансформатора, выпрямителя и схемы для сглаживания (фильтра). Первый предназначен для регулировки уровня выходного напряжения. У него на входе и на выходе используется переменное напряжение. Выпрямитель отсекает отрицательные импульсы, а на выход подаёт только положительные.
Сглаживание обычно выполняется с помощью конденсатора. При повышении напряжения на его обкладках накапливается заряд, а при снижении он снимается с них. Таким образом, резкие изменения сглаживаются, делая выходное напряжение приемлемым для потребляющего оборудования. Сигнал не выравнивается полностью, но становится пригодным по своим параметрам для используемого электричество оборудования. Качество выполненной работы характеризует коэффициент выпрямления. Обычно это отношение прямого тока прибора к обратному. Но такой расчет приемлем для идеального устройства. Так коэффициент выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.
Выпрямители, основу которых составляют полупроводниковые элементы, классифицируются по таким признакам, как:
Выбор схемы прибора зависит от нагрузки и формы потребления тока. При этом нужно учитывать такие параметры выпрямителей, как:
Для чего используется выпрямитель
Для передачи и транспортировки электроэнергии удобно использовать переменный ток. Однако электроприборы часто рассчитаны на применение постоянного тока. С целью преобразования переменного тока в постоянный используются различные схемы выпрямления. В частности, преобразовывающие устройства бывают нужны для:
Выпрямитель тока также используется с целью детектирования модулированных сигналов. Поскольку в обычной жизни и для решения производственных задач электричества требуется всё больше, подстанции стараются модернизировать, чтобы они действовали эффективнее. Иногда это приводит к различным искажениям поступающего переменного напряжения. В таком случае потребителю выгодно самостоятельно устанавливать и использовать выпрямители, которые также называются стабилизаторами.
Преимущества применения
Использование выпрямителей пользователями выгодно по следующим причинам:
Однофазные выпрямители
Существуют разные схемы выпрямителей. Они различаются по своей эффективности и экономичности в зависимости от того, какой используется принцип работы выпрямителя.
Диодное устройство
Когда говорят о преобразовании переменного напряжения в постоянное, то обычно это не означает, что на выходе оно будет выражаться горизонтальной прямой линией. Качество обработки сигналов может быть различным в зависимости от того, какой тип устройства используется и как работает это устройство. Гарантируется только то, что выходное выпрямленное напряжение будет иметь один знак. Наиболее простым способом преобразования является использование цепи, состоящей из диода и нагрузки.
Виды диодных выпрямителей работают следующим образом: на клеммы слева поступает переменное напряжение. Диод пропускает только положительные импульсы. Когда поступают отрицательные, на выходе появляется нулевое значение. В результате создается напряжение одного знака. Графики представлены далее.
Выпрямитель с диодом называется простым, но применяется редко, поскольку имеет очевидные недостатки. Здесь теряется более половины энергии, а выходное напряжение резко изменяется, что для некоторых электрических приборов не приемлемо.
Однополупериодный выпрямитель
Схема выпрямителя с конденсатором также считается одной из наиболее простых. Она выглядит следующим образом:
Как можно увидеть на схеме, выпрямитель переменного электрического тока с конденсатором снабжен еще трансформатором, позволяющим получать нужное напряжение. На этом этапе оно остаётся переменным, но меняет амплитуду. Выпрямительное действие основано на работе диода и конденсатора. На обкладки конденсатора попадают только положительные полупериоды синусоиды, поскольку отрицательные не проходят через диод.
На верхнем графике изображена синусоида напряжения, поступающего в выпрямитель на представленной схеме. На нижнем показано, каким будет это напряжение в результате прохождения через диод.
Заряд на обкладках конденсатора растёт при увеличении напряжения. При его уменьшении до нуля он начинает стекать, компенсируя скачки. На выход поступает постоянное напряжение. В схеме применяют для этой цели электролитический конденсатор с большой емкостью. Считается, что лучшие преобразователи для бытовой аппаратуры должны иметь ёмкость не меньше 2200 микрофарад.
Двухполупериодный выпрямитель
Рассматриваемый выпрямитель — это довольно сложное устройство, в схему которого включен трансформатор с двумя вторичными обмотками. Такой преобразователь позволяет использовать не только положительные полупериоды, но и отрицательные.
Выпрямитель со средней точкой работает следующим образом: входное напряжение изменяется по синусоидальному закону. Во время положительного полупериода выпрямление тока будет происходить с использованием того диода, который расположен в верхней части схемы (В1), а при отрицательном — в нижней части (В2).
На нижнем графике показано, какое напряжение образуется после прохождения диодов. Оно не будет принимать отрицательных значений. Теперь его необходимо сгладить. Это выполняется с помощью мощного конденсатора аналогично тому, как реализовано в однополупериодном выпрямителе. Полупроводниковый двухполупериодный выпрямитель обеспечивает на выходе схемы постоянное напряжение со сглаженным сигналом.
Мостовая схема
Этот электронный популярный выпрямитель относится к категории двухполупериодных. Мостовая схема является одной из наиболее распространённых.
При переменном напряжении направление тока меняется по синусоидальному закону. Это происходит дважды в течение одного цикла. При частоте 50 Герц направление меняется 100 раз за секунду. В результате работы диодного моста на выходе будут получены только положительные импульсы напряжения.
На приведённой схеме показано как через диодный мост проходит ток для каждого полупериода. Он выбирает соответствующий маршрут в зависимости от знака напряжения.
Когда на верхней клемме положительное напряжение, ток проходит на провод, ведущий к положительному выходу постоянного тока, выбирая для этого верхнюю правую ветвь диодного моста. Если напряжение отрицательное, то на указанный провод проходит ток с нижней клеммы. Аналогичным образом работает другая ветвь схемы.
При сборке такого выпрямителя нужно учитывать полярность моста. В противном случае можно подключить конденсатор неправильно, что может привести к его порче. Для этого достаточно запомнить следующее правило. В точке, куда смотрят катоды нужно подключать положительный провод, а в той, где аноды — отрицательный.
На выход с диодного моста напряжение будет поступать в виде последовательности импульсов положительной полярности. При его росте конденсатор заряжается, а при уменьшении — отдает заряд, сглаживая импульсы. В результате на выходе схемы образуется постоянное напряжение.
Преобразователь, состоящий из диодного моста, можно сделать самостоятельно из четырёх радиодеталей или воспользоваться готовым. В последнем случае он является цельным элементом с обозначениями на каждом выходе, необходимыми для правильного подключения.
Трёхфазные выпрямители
Рассмотренные выше схемы эффективно работают с однофазным напряжением. Однако на практике часто используется трёхфазное. Можно, конечно, установить преобразователь отдельно для каждой фазы, но при этом поступающая электроэнергия будет использоваться неэффективно. Поэтому применяются разные типы трехфазных выпрямителей.
Полупериодный трёхфазный выпрямитель
Такие электротехнические устройства принимают сигналы от каждой из трёх фаз и от нуля. Схема выглядит следующим образом:
Дополнительно для сглаживания применяется конденсатор. Подобный метод используется и в однофазном выпрямителе, но в трехфазном сглаживание получается более качественным из-за сдвига фаз относительно друг друга.
Мостовая трёхфазная схема
Этот вариант считается наиболее эффективным для устройств, выпрямляющих трёхфазное напряжение.
Получаемый сигнал сглаживают, для чего также применяют конденсатор. За счёт использования трёх фаз выпрямитель считается более качественным по сравнению с однофазным.
Многофазные выпрямители
Обычно в электросети бывает однофазное или трёхфазное электричество. Однако в такой отрасли, как электротехника используют и многофазное напряжение. Речь идёт о ситуации, когда количество фаз больше трёх. В этом случае применяются выпрямители, которые называются N-фазными.
С ними работают также, как и с трёхфазными. Практически всегда для этой цели используют мостовые схемы в нужном количестве. Классификация выпрямителей для этого случая предусматривает устройства, раздельные для каждой фазы, объединённые кольцом или звездой, а также последовательные.
История создания
В 1873 году британским учёным Фредериком Гутри была предложена схема выпрямления, основанная на использовании вакуумных диодов. В следующем, 1874 году, Карл Фердинанд Браун из Германии изобрёл точечный твердотельный выпрямитель.
В 1904 году Джон Флемминг создал качественный ламповый диод, который в дальнейшем служил основой для создания рассматриваемых устройств. Спустя 2 года был придуман кристаллический детектор. В тридцатых годах проводились активные исследования эффектов, которые возникали на границе между кристаллами и металлическими деталями. На их основании в 1939 года было обнаружено явление p-n перехода. Одновременно было раскрыто влияние тех или иных примесей на тип проводимости (электронный или дырочный).
Выпрямительный мост в том виде, в котором он сейчас известен, создан польским электротехником Каролем Поллаком. Позже, но независимо от него, такое же открытие было сделано Лео Гретцем. Иногда в технической литературе используется название, данное в честь последнего — схема Гретца.
В заключение следует сказать, что принцип построения выпрямляющего устройства может использоваться самый разный. Но любой из них обеспечивает на выходе напряжение, которое можно назвать постоянным лишь условно. Выпрямитель выдает однонаправленное пульсирующее напряжение. В большинстве случаев его требуется сглаживать фильтрами.
Видео по теме
Выпрямители: разновидности, схемы, формулы и функции расчета
В маломощных источниках питания (до нескольких сотен ватт) обычно используют однофазные выпрямители. В мощных источниках целесообразно применять трехфазные выпрямители.
Выпрямители имеют следующие основные параметры: а) среднее значение выходного напряжения uвых
где Т − период напряжения сети (для промышленной сети − 20 мс);
Обозначим его через ε %: ε % = Um/Uср · 100%
Указанные параметры являются наиболее важными при использовании выпрямителя.
Параметры выпрямителей
При проектировании выпрямителя широко применяются также следующие параметры, характеризующие его внутренние особенности:
Токи Iд.ср и Iд.макс принято выражать через Iср. Значение Uобр.макс используется для выбора вентиля по напряжению. Значения
Iд.сри Iд.макс используются для выбора вентиля по току. Здесь следует иметь в виду, что вследствие малой тепловой инерционности полупроводникового вентиля он может выйти из строя даже в том случае, когда его средний ток I д.срм мал, но велик максимальный ток Iд.макс.
Однофазный однополупериодный выпрямитель
Он является простейшим и имеет схему, изображенную на рис. 2.73, а. В таком выпрямителе ток через нагрузку протекает лишь в течение полупериода сетевого напряжения (рис. 2.73, б).
Исходя из приведенных выше определений, получим основные параметры:
Как понизить напряжение?
За счет наличия большого количества международных стандартов и технических решений питание электронных устройств может осуществляться от различных номиналов. Но, далеко не все они присутствуют в свободном доступе, поэтому для получения нужной разности потенциалов придется использовать преобразователь. Такие устройства можно найти как в свободной продаже, так и собрать самостоятельно из радиодеталей.
В связи с наличием двух родов электрического тока: постоянного и переменного, вопрос, как понизить напряжение, следует рассматривать в ключе каждого из них отдельно.
Понижение напряжения постоянного тока
В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.
Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.
Рис. 1. Замена резистора или стабилитрона
На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.
Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.
На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи. Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.
Понижение напряжения переменного тока
Переменное напряжение в 220 Вольт повсеместно используется для бытовых нужд, за счет физических особенностей его куда проще понизить до какой-либо величины или осуществлять любые другие манипуляции. В большинстве случаев, электрические приборы и так рассчитаны на питание от электрической сети, но если они были приобретены за рубежом, то и уровень напряжения для них может существенно отличаться.
К примеру, привезенные из США устройства питаются от 110В переменного тока, и некоторые умельцы берутся перематывать понижающий трансформатор для получения нужного уровня. Но, следует отметить, что импульсный преобразователь, которым часто комплектуется различный электроинструмент и приборы не стоит перематывать, так как это приведет к его некорректной работе в дальнейшем. Куда целесообразнее установить автотрансформатор или другой на нужный вам номинал, чтобы понизить напряжение.
С помощью трансформатора
Изменение величины напряжения при помощи электрических машин используется в блоках питания и подзарядных устройствах. Но чтобы понизить вольтаж источника в такой способ, можно использовать различные типы преобразовательных трансформаторов:
Выбирая конкретную модель электрической машины, чтобы понизить напряжение, обратите внимание на характеристики конкретной модели по отношению к тем устройствам, которые вы хотите запитать.
Наиболее актуальными параметрами у трансформаторов являются:
Помимо этого любой преобразователь напряжения, даже импульсный трансформатор, следовало бы защитить от токов короткого замыкания и перегрузки в обмотках. Это существенно сократит затраты на ремонт при возникновении аварийных ситуаций.
С помощью резистора
Для понижения напряжения в цепь нагрузки последовательно включается делитель напряжения в виде активного сопротивления.
Основной сложностью в регулировке напряжения на подключаемом приборе является зависимость от нескольких параметров:
Если вы будете понижать от бытовой сети, то ее можно считать источником бесконечной мощности и принять эту составляющую за константу. Тогда расчет резистора будет выполняться таким методом:
После вычисления номинала резистора можете подобрать соответствующую модель из имеющегося ряда. Стоит отметить, что куда удобнее менять потенциал при помощи переменного резистора, включенного в цепь. Подключив его последовательно с нагрузкой, вы можете подбирать положение таким образом, чтобы понизить напряжение до необходимой величины. Однако эффективным способ назвать нельзя, так как помимо работы в приборе, электрическая энергия будет просто рассеиваться на резисторе, поэтому этот вариант является временным или одноразовым решением.
Принцип работы выпрямителя
Маломощные выпрямители
Одними из самых распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт) и выпрямители большой мощности (киловатты и больше).
Принцип работы выпрямителя
Структурная схема выпрямителя:
Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя).
Собственно выпрямителем является та его часть, которая обведена на рисунке пунктиром и состоит из трансформатора и выпрямительного устройства.
Нулевая схема выпрямления
Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на нулевой схеме.
Нулевая схема выглядит так:
Трансформатор Тр имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а напряжения на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.
Как возникает пульсирующее напряжение на нагрузке? Сначала будем считать нагрузку чисто активным сопротивлением, Zн=Rн. Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток.
Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке Rн. Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.
Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.
Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:
Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны.
Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.
Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:
Выпрямительный мост или схема Гретца
Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):
В этом случае первые полупериоды будут работать, например, диоды D2 и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:
Мостовая схема имеет менее сложный, более легкий и дешевый трансформатор.
Эта схема появилась исторически раньше нулевой, однако распространения не получила, потому что имела четыре диода вместо двух. А при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение.
Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую.
Основные соотношения для выпрямителя
Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку Ud и среднее значение тока в нем Id.
Среднее значение выпрямленного напряжения
Запомним это выражение на дальнейшее. В нашем случае m=2 и
. Поскольку Ud считаем заданным, то
Амплитудное значение вторичного напряжения
Из предыдущего выражения имеем:
Коэффициент трансформации трансформатора
Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:
Действующее значение тока вторичной обмотки
Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть
Действующее значение тока первичной обмотки
Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки :
Мощность трансформатора
Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:
Пульсация выпрямленного напряжения
Пульсирующее напряжение состоит из среднего значения Ud и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:
Где: l – полупериод π/m;
Наибольшую амплитуду будет иметь первая гармоника U(1)m, поэтому определим только ее, предположив, что k=1:
Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:
Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.
Средний ток диодов
Наибольшее обратное напряжение на диоде
В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:
Что такое однофазный выпрямитель, принцип работы, типы и схемы
Выпрямитель преобразует колеблющийся синусоидальный источник переменного напряжения в источник постоянного напряжения постоянного тока с помощью диодов, тиристоров, транзисторов или преобразователей. Этот процесс выпрямления может принимать различные формы с полуволновыми, двухполупериодными, неконтролируемыми и полностью управляемыми выпрямителями, преобразующими однофазный или трехфазный источник питания в постоянный уровень постоянного тока.
Описание
Выпрямители являются одним из основных строительных блоков преобразования мощности переменного тока с полуволновым или двухволновым выпрямлением, обычно выполняемым полупроводниковыми диодами. Диоды позволяют переменным токам течь через них в прямом направлении, в то же время блокируя протекание тока в обратном направлении, создавая постоянный уровень напряжения постоянного тока, что делает их идеальными для выпрямления.
Однако постоянный ток, который выпрямляется диодами, не такой чистый, как ток, получаемый, скажем, от источника батареи, но имеет изменения напряжения в виде пульсаций, наложенных на него в результате переменного питания.
Но для однофазного выпрямления нам нужна синусоидальная форма переменного тока с фиксированным напряжением и частотой, как показано на рисунке.
Среднеквадратическое значение или эффективное значение синусоиды (синусоида — это другое название синусоидальной волны) обеспечивает такое же количество энергии для сопротивления, что и источник постоянного тока того же значения. Среднеквадратическое значение (RMS) синусоидального напряжения (или тока) определяется следующим образом: 0,7071 * V P.
Принцип работы
Все однофазные выпрямители используют полупроводниковые устройства в качестве основного устройства преобразования переменного тока в постоянный. Однофазные неконтролируемые полуволновые выпрямители являются наиболее простой и, возможно, наиболее широко используемой схемой выпрямления для малых уровней мощности, поскольку на их выход сильно влияет реактивное сопротивление подключенной нагрузки.
Для неконтролируемых выпрямительных цепей полупроводниковые диоды являются наиболее часто используемым устройством и расположены таким образом, чтобы создавать либо полуволновую, либо двухполупериодную схему выпрямителя. Преимущество использования диодов в качестве устройства выпрямления состоит в том, что по своей конструкции они являются однонаправленными устройствами, имеющими встроенный однонаправленный pn-переход.
Этот pn-переход преобразует двунаправленный переменный источник питания в однонаправленный ток, устраняя половину источника питания. В зависимости от подключения диода, он может, например, пропустить положительную половину сигнала переменного тока при прямом смещении, исключая при этом отрицательный полупериод, когда диод становится обратным смещением.
Обратное также верно, устраняя положительную половину или форму волны и передавая отрицательную половину. В любом случае, выход из одного диодного выпрямителя состоит только из одной половины формы сигнала 360 o, как показано на рисунке.
Полуволновое выпрямление
Приведенная выше конфигурация однофазного полуволнового выпрямителя пропускает положительную половину формы сигнала переменного тока, причем отрицательная половина исключается. Меняя направление диода, мы можем пропустить отрицательные половины и устранить положительные половины формы сигнала переменного тока. Поэтому на выходе будет серия положительных или отрицательных импульсов.
Таким образом, на подключенную нагрузку не подается напряжение или ток, R L в течение половины каждого цикла. Другими словами, напряжение на сопротивлении нагрузки R L состоит только из половины сигналов, либо положительных, либо отрицательных, поскольку оно работает только в течение половины входного цикла, отсюда и название полуволнового выпрямителя.
Надеемся, что мы видим, что диод позволяет току течь в одном направлении, создавая только выход, который состоит из полупериодов. Эта пульсирующая форма выходного сигнала не только изменяется ВКЛ и ВЫКЛ каждый цикл, но присутствует только в 50% случаев, и при чисто резистивной нагрузке это содержание пульсации высокого напряжения и тока является максимальным.
Этот пульсирующий постоянный ток означает, что эквивалентное значение постоянного тока падает на нагрузочном резисторе, поэтому R L составляет только половину среднего значения синусоидальных сигналов. Поскольку максимальное значение синусоидальной формы сигнала равно 1 (sin (90 o )), среднее значение постоянного тока, полученное для половины синусоиды, определяется как: 0,637 x максимальное значение амплитуды.
Среднее значение синусоиды
Таким образом, для полуволнового выпрямителя в 50% случаев среднее значение составляет 0,637 * A MAX, а в 50% случаев — ноль. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:
Таким образом, соответствующие выражения для среднего значения напряжения или тока для полуволнового выпрямителя задаются как:
V AVE = 0,318 * V MAX
I AVE = 0,318 * I MAX
Обратите внимание, что максимальное значение A MAX — это значение входного сигнала, но мы также могли бы использовать его среднеквадратичное значение или среднеквадратичное значение, чтобы найти эквивалентное выходное значение постоянного тока однофазного полуволнового выпрямителя. Чтобы определить среднее напряжение для полуволнового выпрямителя, мы умножаем среднеквадратичное значение на 0,9 (форм-фактор) и делим произведение на 2, то есть умножаем его на 0,45, получая:
V AVE = 0,45 * V RMS
I AVE = 0,45 * I RMS
Затем мы можем видеть, что схема полуволнового выпрямителя преобразует либо положительные, либо отрицательные половины формы сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,318 * A MAX или 0,45 * A RMS, как показано.
Полноволновое выпрямление
Двухполупериодный выпрямитель использует обе половины входной синусоидальной формы волны для обеспечения однонаправленного выход, т.к. он состоит из двух полуволновых выпрямителей, соединенных вместе для питания нагрузки.
Однофазный двухполупериодный выпрямитель делает это с помощью четырех диодов, расположенных в виде моста, пропускающих положительную половину формы волны, как и раньше, но инвертирующих отрицательную половину синусоидальной волны для создания пульсирующего выхода постоянного тока.
Несмотря на то, что напряжение и ток на выходе выпрямителя пульсируют, оно не меняет направление, используя полные 100% формы входного сигнала и, таким образом, обеспечивает двухполупериодное выпрямление.
Однофазный двухполупериодный мостовой выпрямитель
Эта мостовая конфигурация диодов обеспечивает двухполупериодное выпрямление, потому что в любое время два из четырех диодов смещены в прямом направлении, а два других — в обратном. Таким образом, в проводящем тракте два диода вместо одного для полуволнового выпрямителя. Следовательно, будет разница в амплитуде напряжения между V IN и V OUT из-за двух прямых падений напряжения на последовательно соединенных диодах. Здесь, как и прежде, для простоты математики мы примем идеальные диоды.
Так как же работает однофазный двухполупериодный выпрямитель? Во время положительного полупериода V IN диоды D 1 и D 4 смещены в прямом направлении, а диоды D 2 и D 3 — в обратном. Затем для положительного полупериода входного сигнала ток течет по пути: D 1 — A — R L — B — D 4 и возвращается к источнику питания.
Во время отрицательного полупериода V IN диоды D 3 и D 2 смещены в прямом направлении, а диоды D 4 и D 1 — в обратном. Затем для отрицательного полупериода входного сигнала ток течет по пути: D 3 — A — R L — B — D 2 и возвращается к источнику питания.
В обоих случаях положительные и отрицательные полупериоды входного сигнала создают положительные выходные пики независимо от полярности входного сигнала и, как таковой, ток нагрузки I всегда течет в том же направлении через нагрузку, R L между точками или узлами A и B. Таким образом, отрицательный полупериод источника становится положительным полупериодом при нагрузке.
Таким образом, в зависимости от того множества проводящих диодов, узел А всегда более положительный, чем узел B. Поэтому ток и напряжение нагрузки являются однонаправленными или постоянными, что дает нам следующую форму выходного сигнала.
Форма волны на выходе выпрямителя
Хотя этот пульсирующий выходной сигнал использует 100% входного сигнала, его среднее напряжение постоянного тока не совпадает с этим значением.
Однако двухполупериодные выпрямители имеют два положительных полупериода на входной сигнал, что дает нам другое среднее значение.
Среднее значение двухполупериодного выпрямителя
Для двухполупериодного выпрямителя для каждого положительного пика имеется среднее значение 0,637 * A MAX, и, поскольку на входной сигнал имеется два пика, это означает, что есть две серии средних значений, суммируемых вместе. Таким образом, выходное напряжение постоянного тока двухполупериодного выпрямителя в два раза выше, чем у предыдущего полуволнового выпрямителя. Если максимальная амплитуда равна 1, среднее значение или эквивалент значения постоянного тока, видимый по сопротивлению нагрузки, R L будет:
Таким образом, соответствующие выражения для среднего значения напряжения или тока для двухполупериодного выпрямителя задаются как:
V AVE = 0,637 * V MAX
I AVE = 0,637 * I MAX
Чтобы определить среднее напряжение для двухполупериодного выпрямителя, мы умножаем среднеквадратичное значение на 0,9:
V AVE = 0,9 * V RMS
I AVE = 0,9 * I RMS
Двухполупериодная схема выпрямителя преобразует ОБЕ положительную или отрицательную половинки сигнала переменного тока в импульсный выход постоянного тока, который имеет значение 0,637 * A MAX или 0,9 * A RMS.
Полноволновой полууправляемый мостовой выпрямитель
Двухполупериодное выпрямление имеет много преимуществ по сравнению с более простым полуволновым выпрямителем, например, выходное напряжение более согласовано, имеет более высокое среднее выходное напряжение, входная частота удваивается в процессе выпрямления и требует меньшего значения емкости сглаживающего конденсатора, если таковой требуется. Но мы можем улучшить конструкцию мостового выпрямителя, используя тиристоры вместо диодов в его конструкции.
Заменив диоды внутри однофазного мостового выпрямителя тиристорами, мы можем создать фазо-управляемый выпрямитель переменного тока в постоянный для преобразования постоянного напряжения питания переменного тока в контролируемое выходное напряжение постоянного тока. Фазоуправляемые выпрямители, полууправляемые или полностью управляемые, имеют множество применений в источниках питания переменного тока и в управлении двигателями.
Однофазный мостовой выпрямитель — это то, что называется «неуправляемым выпрямителем» в том смысле, что приложенное входное напряжение передается непосредственно на выходные клеммы, обеспечивая фиксированное среднее значение эквивалентного значения постоянного тока. Чтобы преобразовать неуправляемый мостовой выпрямитель в однофазную полууправляемую выпрямительную цепь, нам просто нужно заменить два диода тиристорами (SCR), как показано на рисунке.
В конфигурации с полууправляемым выпрямителем среднее напряжение нагрузки постоянного тока контролируется с использованием двух тиристоров и двух диодов. Как мы узнали из нашего урока о тиристорах, тиристор будет проводить (состояние «ВКЛ») только тогда, когда его анод (A) более положительный, чем его катод (K) и импульс запуска подается на его затвор (G). В противном случае он остается неактивным.
Таким образом, задерживая импульс запуска, подаваемый на клемму затвора тиристоров, на контролируемый период времени или угол ( α ) после того, как напряжение питания переменного тока прошло пересечение нулевого напряжения между анодным и катодным напряжением, мы можем контролировать, когда тиристор начинает проводить ток и, следовательно, контролировать среднее выходное напряжение.
Во время положительного полупериода входного сигнала ток течет по пути: SCR 1 и D 2 и обратно к источнику питания. Во время отрицательного полупериода V INпроводимость проходит через SCR 2 и D 1 и возвращается к источнику питания.
Понятно, что один тиристор из верхней группы ( SCR 1 или SCR 2 ) и соответствующий ему диод из нижней группы ( D 2 или D 1 ) должны проводить вместе, чтобы протекать ток любой нагрузки.
Таким образом, среднее выходное напряжение V AVE зависит от угла включения α для двух тиристоров, включенных в полууправляемый выпрямитель, поскольку два диода неуправляются и пропускают ток всякий раз, когда смещено вперед. Таким образом, для любого угла срабатывания затвора α среднее выходное напряжение определяется как:
Обратите внимание, что максимальное среднее выходное напряжение возникает, когда α = 1, но все еще равно 0,637 * V MAX, как для однофазного неуправляемого мостового выпрямителя.
Полностью управляемый мостовой выпрямитель
Однофазные мостовые выпрямители с полным управлением известны чаще как преобразователи переменного тока в постоянный. Полностью управляемые мостовые преобразователи широко используются в управлении скоростью машин постоянного тока и легко достигаются путем замены всех четырех диодов мостового выпрямителя тиристорами, как показано на рисунке.
Затем в режиме работы с непрерывной проводимостью четыре тиристора постоянно переключаются в виде чередующихся пар для поддержания среднего или эквивалентного выходного напряжения постоянного тока. Как и в случае полууправляемого выпрямителя, выходное напряжение можно полностью контролировать, изменяя угол задержки включения тиристоров ( α ).
Таким образом, выражение для среднего напряжения постоянного тока однофазного полностью управляемого выпрямителя в режиме непрерывной проводимости дается как:
Резюме однофазного выпрямления
Однофазные выпрямители могут принимать различные формы для преобразования переменного напряжения в постоянное напряжение из неконтролируемых однофазных выпрямителей на полуволнах в полностью управляемые двухполупериодные мостовые выпрямители с использованием четырех тиристоров.
Преимуществами полуволнового выпрямителя являются его простота и низкая стоимость, так как для него требуется только один диод. Однако это не очень эффективно, так как используется только половина входного сигнала, дающего низкое среднее выходное напряжение.
Двухполупериодный выпрямитель более эффективен, чем полуволновой выпрямитель, поскольку он использует оба полупериода входной синусоидальной волны, создавая более высокое среднее или эквивалентное выходное напряжение постоянного тока. Недостатком двухполупериодной мостовой схемы является то, что она требует четырех диодов.
Фазоуправляемое выпрямление использует комбинации диодов и тиристоров (SCR) для преобразования входного напряжения переменного тока в контролируемое выходное напряжение постоянного тока. Полностью контролируемые выпрямители используют четыре тиристора в своей конфигурации, тогда как наполовину управляемые выпрямители используют комбинацию как тиристоров, так и диодов.