что нового в квантовой физике

Новое исследование показывает, что время в квантовой физике может течь в любую сторону

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Традиционная теория о том, что время может двигаться только вперед, оспаривается исследованием, но условия для «стрелки назад» ограничены. Вопрос о том, можно ли повернуть время вспять, является «одной из фундаментальных проблем» квантовой физики.

Течение времени может идти в любую сторону в мире квантовой физики, и это редкое явление можно наблюдать и измерять в хорошо спланированном эксперименте, согласно новому исследованию.

Почти столетие квантовые физики спорят о том, можно ли применить закон суперпозиции ко времени, чтобы субатомная частица могла одновременно ощущать прошлое и будущее.

Дебаты далеки от завершения, в частности потому, что остается неясным, при каких обстоятельствах время может быть обращено вспять и как обнаружить такое событие.

Это явление можно наблюдать только тогда, когда система чрезвычайно стабильна, с небольшим количеством беспорядка, или «энтропии». «Мы не знаем, эволюционирует ли кубит (квантовая частица) «вперед во времени» или «назад во времени», пока он не будет измерен«, — сказала Рубино.

Путешествуют ли частицы во времени в прошлое или будущее, остается неизвестным до тех пор, пока они не будут измерены.

«Хотя эта идея кажется довольно бессмысленной в применении к нашему повседневному опыту, на самом фундаментальном уровне законы Вселенной основаны на квантово-механических принципах«, — говорит Рубино.

Время часто рассматривается как постоянно увеличивающийся параметр, но «наше исследование показывает, что законы, управляющие ее течением в квантово-механическом контексте, гораздо сложнее. Это может говорить о том, что нам необходимо переосмыслить способ представления этой величины во всех тех контекстах, где квантовые законы играют решающую роль».

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

В сложных системах время всегда движется вперед, но ученые утверждают, что в небольшой стабильной системе они могут обнаружить обратное движение времени.

В квантово-физических экспериментах с небольшим количеством атомов или легких частиц «почти любую операцию можно зарезервировать. Мы рассматривали это как физический процесс, а не как путешествие во времени«, — сказала Ванг, которая не принимала участия в британском исследовании.

«Мы не очень часто рассматриваем эффект времени, потому что движение частиц в квантовых экспериментах обычно намного медленнее скорости света«, — добавила она.

Вопрос времени рассматривался такими великими мыслителями, как Исаак Ньютон, который верил в существование «универсальных часов», управляющих жизнью и смертью всего во Вселенной.

Альберт Эйнштейн опроверг теорию абсолютного времени (и пространства) Ньютона своей теорией относительности, которая утверждала, что для человека, путешествующего со скоростью света, часы перестанут тикать.

По мнению Эйнштейна, человек, путешествующий быстрее света, теоретически мог бы видеть, что время движется вспять. Но далее он сказал, что ничто не движется быстрее света, потому что все было определено с момента рождения Вселенной.

Другими словами, стрела времени всегда направлена вперед.

Рубино и ее коллеги заявили, что общепринятое определение времени применимо к большой системе с большим количеством хаоса. В таких системах действительно невозможно уловить обратное движение во времени. Но в небольшой, стабильной системе это явление легче обнаружить, сказала она.

«В качестве примера можно взять последовательность действий, которые мы совершаем в утренней рутине. Если бы нам показали, как наша зубная паста перемещается с зубной щетки обратно в тюбик, мы бы не сомневались, что это перемотанная назад запись нашего дня«, — сказала она.

Куан Хайтао, профессор физики Пекинского университета, говорит, что вопрос о том, можно ли повернуть время вспять, остается одной из самых фундаментальных проблем квантовой физики.

«Возьмем, к примеру, пустую коробку, разделенную посередине стеной. Если заполнить одну сторону коробки беспорядочно прыгающими шариками для пинг-понга и убрать стенку, то шарики распределятся по всей коробке. Все шарики не вернутся обратно на ту сторону, потому что время нельзя повернуть вспять«, — сказал Куан.

«Но если мы уменьшим количество шариков для пинг-понга в коробке, вероятность того, что это произойдет, увеличится. Это известно как временная симметрия в квантовой физике, которая означает, что время может идти как вперед, так и назад«, — сказал он.

«Почему симметрия исчезает в большой, сложной системе, остается загадкой«.

Источник

Физики обнаружили новый квантовый парадокс, ставящий под сомнение саму реальность

Если дерево падает в лесу, и никто не слышит его падения, издает ли оно звук? Некоторые ученые говорят, что нет.

А если кто-нибудь услышит? Если вы думаете, что это означает, что действительно был звук, возможно, вам придется пересмотреть свое мнение.

Мы обнаружили новый парадокс в квантовой механике — одной из двух наших самых фундаментальных научных теорий вместе с теорией относительности Эйнштейна — который ставит под сомнение некоторые здравые представления о физической реальности, пишет Эрик Кавальканти, доцент (научный сотрудник ARC Future), Университет Гриффита.

Квантовая механика против здравого смысла.

Взгляните на эти три утверждения:

Все это интуитивные идеи, и они широко распространены даже среди физиков. Но наше исследование, опубликованное в Nature Physics, показывает, что все они не могут быть правдой — иначе квантовая механика должна перестать работать на каком-то этапе.

Чтобы понять, почему это так важно, давайте посмотрим на эту историю.

Рассматривалась пара далеких частиц в особом состоянии, теперь известном как «запутанное» состояние. Когда одно и то же свойство (скажем, положение или скорость) измеряется на обеих запутанных частицах, результат будет случайным — но будет корреляция между результатами для каждой частицы.

Например, наблюдатель, измеряющий положение первой частицы, может идеально предсказать результат измерения положения далекой частицы, даже не касаясь ее. Или же наблюдатель может вместо этого предсказать скорость. Они утверждали, что это имело естественное объяснение, если оба свойства существовали до измерения.

Хотя до окончательной проверки могут потребоваться десятилетия, если квантово-механические предсказания останутся верными, это будет иметь серьезные последствия для нашего понимания реальности — даже в большей степени, чем корреляции Белла.

Во-первых, обнаруженные нами корреляции нельзя объяснить, просто сказав, что физических свойств не существует, пока они не будут измерены.

Теперь ставится под сомнение абсолютная реальность самих результатов измерений.

Наши результаты вынуждают физиков вплотную заняться проблемой измерения: либо наш эксперимент не масштабируется, и квантовая механика уступает место так называемой «объективной теории коллапса», либо одно из трех предположений здравого смысла должно быть отвергнуто.

Существуют теории, которые постулируют «действие на расстоянии», согласно которым действия могут иметь мгновенный эффект в любом месте Вселенной. Однако это прямо противоречит теории относительности Эйнштейна.

Некоторые ищут теорию, которая отвергает свободу выбора, но они требуют либо обратной причиной связи, либо, казалось бы, конспиративной формы фатализма, называемой «супердетерминизмом».

Другой способ разрешить конфликт — сделать теорию Эйнштейна еще более относительной. Как думал Эйнштейна, разные наблюдатели могут расходиться во мнениях относительно того, когда и где что-то происходит, но то, что происходит — абсолютный факт.

Однако в некоторых интерпретациях, таких как реляционная квантовая механика, Кубизм или многомировая интерпретация, сами события могут происходить только относительно одного или нескольких наблюдателей. Упавшее дерево, которое наблюдал один, может не быть фактом для всех остальных.

Все это не означает, что вы можете выбирать свою собственную реальность. Во-первых, вы можете выбирать, какие вопросы задавать, но ответы дает мир. И даже в реляционном мире, когда два наблюдателя общаются, их реальности переплетаются. Таким образом возникает общая реальность.

Это означает, что если мы оба наблюдаем падение одного и того же дерева, а вы говорите, что не слышите его падения, вам может потребоваться слуховой аппарат.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2

Ученые обнаружили признаки существования пятой силы природы. В этом им помог эксперимент с мюоном g-2 — он показал отклонение от Стандартной модели. Рассказываем, что это такое, о какой новой силе идет речь и что стоит за новым открытием.

Читайте «Хайтек» в

С чего все началось?

Ученые из Аргоннской национальной лаборатории Министерства энергетики США (DOE) и Национальной ускорительной лаборатории Ферми вместе с сотрудниками из 46 других учреждений и семи стран проводят эксперимент, чтобы проверить наше нынешнее понимание Вселенной. Первый результат указывает на существование неоткрытых частиц или сил. Эта новая физика может помочь объяснить давние научные загадки, что приведет к новому пониманию нашей Вселенной и разработке новых технологий.

Представители проекта Muon g-2 («Мюон джи минус два») огласили первые результаты измерений магнитных свойств мюонов. Проект Muon g-2 — продолжение эксперимента, который начался в 90-х годах в Брукхейвенской национальной лаборатории Министерства энергетики США, когда ученые измерили магнитное свойство фундаментальной частицы, называемой мюоном. Эксперимент в Брукхейвене дал результат, который отличался от значения, предсказанного Стандартной моделью, лучшим описанием учеными структуры и поведения Вселенной. Новый эксперимент представляет собой воссоздание эксперимента Брукхейвена, созданный для того, чтобы оспорить или подтвердить несоответствие с более высокой точностью.

Недавно ученые выяснили, что в поведении мюонов есть почти неоспоримые следы «новой физики» — то есть явлений, которые не описывает основная теория физики элементарных частиц — так называемая Стандартная модель. Об этом рассказал официальный представитель проекта Крис Полли, выступая на онлайн-брифинге для журналистов.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

«Мы 20 лет ожидали этого результата. Он критически важен для понимания того, что именно было причиной расхождения в измерениях 20-летней давности и предсказаниях Стандартной модели. Мы удвоили точность измерений и не нашли ничего, что противоречило бы прошлым результатам. Это дает большие надежды на открытие „новой физики“ в поведении мюонов», — рассказал ученый.

Два разных эксперимента с мюонами (в США и Европе) в итоге показали неожиданные результаты. Мюоны вели себя не так, как от них ожидали, за пределами Стандартной модели. Это может поменять представление ученых о том, как вообще все работает во Вселенной.

Опубликованные в 2021 году предварительные результаты экспериментов в ЦЕРНеи на объекте лаборатории Ферми в США бросают вызов представлениям физиков о Вселенной.

Что такое «новая физика»?

Стандартная модель — общепринятая на данный момент теоретическая конструкция, описывающая взаимодействие всех элементарных частиц во Вселенной. Свод правил, называемый Стандартной моделью, был разработан около 50 лет назад. Эксперименты, проводившиеся на протяжении десятилетий, снова и снова подтверждали, что его описания частиц и сил, которые составляют и управляют Вселенной, в значительной степени верны. До настоящего времени.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Теории, которые лежат за пределами Стандартной модели, включают в себя различные расширения Стандартной модели через суперсимметрию, такие, как Минимальная суперсимметричная стандартная модель и Следующая за минимальной суперсимметричная стандартная модель, либо совершенно новые объяснения, такие как теория струн, M-теория и дополнительные измерения. Поскольку эти теории, как правило, полностью согласуются с текущими наблюдаемыми явлениями или не доведены до состояния конкретных предсказаний, вопрос о том, какая теория является правильной (или по крайней мере «лучшим шагом» к Теории всего), может быть решен только с помощью экспериментов. В настоящее время это одна из наиболее активных областей исследований как в теоретической, так и в экспериментальной физике.

Стандартная модель очень точно предсказывает g-фактор мюона — значение, которое говорит ученым, как эта частица ведет себя в магнитном поле. Этот g-фактор, как известно, близок к значению два, и эксперименты измеряют его отклонение от двух, отсюда и название Muon g-2.

Эксперимент в Брукхейвене показал, что g-2 отличается от теоретического предсказания на несколько частей на миллион. Эта крохотная разница намекала на существование неизвестных взаимодействий между мюоном и магнитным полем — взаимодействий, которые могут включать новые частицы или силы.

К чему приведут новые открытия? Частицы, выходящие за рамки Стандартной модели, могут помочь объяснить загадочные явления, как природа темной материи, загадочной и широко распространенной субстанции, о существовании которой физики знают, но её еще предстоит обнаружить.

А что такое мюоны?

Вся наша Вселенная построена из частиц размером меньше атома. Некоторые из этих частиц состоят из еще более мелких частиц, другие уже не дробятся. Это и есть элементарные частицы.

Мюоны как раз и являются такими элементарными частицами: они похожи на электроны, только в 200 раз тяжелее.

В ходе эксперимента Muon g-2 частицы разгонялись по 14-метровому кольцу в циркулярном коллайдере под воздействием мощного магнитного поля.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Согласно известным законам физики, это должно было приводить к колебанию мюонов с определенной частотой. Однако физики обнаружили, что частота их колебаний оказалась выше предполагаемой. По их мнению, это может свидетельствовать о действии силы, ранее не известной науке.

Никто не знает точно, что еще, кроме воздействия на мюон, подвластно этой новой силе. Иными словами, поведение мюонов выходило за рамки того, что знают ученые. Физики задумались, а не причастна ли тут какая-то еще неизвестная, пятая сила?

О какой пятой силе идет речь?

Вся наша жизнь подчинена законам физики. Все эти силы, с которыми мы имеем дело каждый день, можно свести к четырем фундаментальным категориям взаимодействий: электромагнитное, сильное, слабое и гравитационное.

Четыре фундаментальных силы определяют взаимодействие всех объектов и частиц во Вселенной. К примеру, сила тяжести, она же гравитация, заставляет объекты падать на землю и не позволяет отрываться от нее без приложения другой силы.

Но, как утверждает международная команда физиков, в ходе исследований в рамках эксперимента Muon g-2, проводившихся в лаборатории городка Батавия рядом с Чикаго, они, возможно, обнаружили новую, пятую силу природы.

«Мы обнаружили, что взаимодействие мюонов не согласуется со Стандартной моделью, — рассказал в интервью «Би-би-си» руководитель эксперимента с британской стороны профессор Марк Ланкастер. — Понятно, что мы все в восторге, потому что это открывает будущее с новыми законами физики, новыми частицами и новыми, невиданными до сих пор силами».

Теоретики полагают, что она может быть каким-то образом связана с еще не открытой субатомной частицей.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Насчет этой гипотетической частицы есть сразу несколько предположений. Это может быть так называемый лептокварк (частица, переносящая информацию между кварками и лептонами) или Z-бозон (который сам для себя служит античастицей).

Эксперимент был поставлен в Национальной ускорительной лаборатории имени Ферми (Фермилаб) в городе Батавия, штат Иллинойс, с целью изучения поведения субатомной частицы под названием мюон.

Два экспермента изменят наше понимание мира

Еще в прошлом месяце физики, проводившие эксперимент на Большом адронном коллайдере в Европе, отмечали, что полученные результаты могут свидетельствовать о наличии новой частицы и силы.

Долгое время в ЦЕРНе физики сталкивали протоны друг с другом, чтобы посмотреть, что произойдет после. Один из экспериментов измеряет, что происходит при столкновении частиц, называемых красными или нижними кварками.

Стандартная модель предсказывает, что эти крушения красивых кварков должны приводить к равному количеству электронов и мюонов. «Это похоже на подбрасывание монеты 1 000 раз и получение примерно равного количества орлов и решек», — сказал руководитель экспериментов по красоте на Большом адронном коллайдере Крис Паркс.

Но этого не произошло.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Исследователи внимательно изучили данные за несколько лет и несколько тысяч аварий и обнаружили разницу в 15%. При этом электронов значительно больше, чем мюонов, сказал исследователь эксперимента Шелдон Стоун из Университета Сиракьюса.

Что в итоге?

Первый результат нового эксперимента полностью согласуется с результатами Брукхейвена, что усиливает свидетельство того, что предстоит открыть новую физику. Объединенные результаты Фермилаба и Брукхейвена показывают отличие от Стандартной модели при значении 4,2 сигмы (или стандартных отклонений), что немного меньше, чем 5 сигм, которые необходимы ученым, чтобы заявить об открытии, но все же убедительное свидетельство новой физики. Вероятность того, что результаты являются статистическими колебаниями, составляет примерно 1 из 40 000. И все же данные заставили физиков во всем мире задуматься, верно ли наше понимание мира. Такого не было со времен открытия бозона Хиггса, часто называемого «частицей Бога».

Британский Совет по научно-техническому оборудованию уже объявил, что результаты экспериментов в США дают весомые подтверждения существованию доселе неизвестной субатомной частицы или новой силы.

По словам исследователей, повторное проведение экспериментов — запланированное в обоих случаях — через год или два позволит достичь невероятно строгих статистических требований, предъявляемых физиками к открытию.

Если результаты подтвердятся, они перевернут «все остальные вычисления», сделанные в мире физики элементарных частиц.

«Могут быть возобновлены усилия по поиску мюонов на Большом адронном коллайдере в поисках возможных намеков на новую физику, лежащую в основе значения g-2, — сказал Карлос Вагнер, физик-теоретик из Аргоннской HEP, который пытается объяснить эти явления. — Также может возобновиться интерес к созданию мюонного коллайдера, который может предоставить прямой способ проверки этой новой физики».

Как только ученые овладеют этой новой физикой, она сможет дать информацию космологическим и квантово-механическим моделям или даже помочь ученым изобрести новые технологии в будущем — возможно, следующую термоусадочную пленку.

В последние годы ученые столкнулись со множеством загадок Вселенной, и доказанное наличие новой силы очень помогло бы в их разгадке.

M-теория — современная физическая теория, созданная с целью объединения фундаментальных взаимодействий. В качестве базового объекта используется так называемая «брана» (многомерная мембрана) — протяжённый двухмерный или с большим числом измерений (n-брана) объект.

В середине 1990-х Эдвард Виттен и другие физики-теоретики обнаружили веские доказательства того, что различные суперструнные теории представляют собой различные предельные случаи неразработанной пока 11-мерной М-теории. Это открытие ознаменовало вторую суперструнную революцию.

В физике элементарных частиц нарушение CP-инвариантности — это нарушение комбинированной чётности (CP-симметрии), то есть неинвариантность законов физики относительно операции зеркального отражения с одновременной заменой всех частиц на античастицы.

Нейтринные осцилляции — превращения нейтрино в нейтрино другого сорта, или же в антинейтрино. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы собственного времени

Барионная асимметрия Вселенной — наблюдаемое преобладание в видимой части Вселенной вещества над антивеществом.

Источник

квантовая физика

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Добавить в закладки

Вы сможете увидеть эту публикацию в личном кабинете

Подпишитесь на нашу рассылку и получайте новости о последних проектах, мероприятиях и материалах ПостНауки

Источник

Как квантовая физика изменила наш мир: от измерения кубитов до алгоритма Шора

Телепортация, путешествие во времени или в параллельные миры — все это следствия появления такой науки, как квантовая физика. Но если телепортация для людей пока возможна лишь в теории, то реальные кейсы, где применяются квантовые вычисления, уже существуют. Ильназ Маннапов, младший научный сотрудник научно-исследовательской лаборатории «Квантовые методы обработки данных» (КФУ), выступил на фестивале науки и технологии «ПРОСТО», организованном российским ИТ-вузом, и рассказал о влиянии квантовых вычислений и физики на человеческое мировоззрение.

Читайте «Хайтек» в

Почему квантовая физика должна испугать

«Если квантовая физика вас не испугала, значит, вы ее не поняли», — как-то сказал один из создателей квантовой физики Нильс Бор. Многие из нас знают про такие явления, как телепортация, путешествие в параллельные миры или в будущее. Но не все знают, что данные явления являются следствиями такой науки, как квантовая физика.

В конце XX века многие исследователи поняли, что квантовую физику можно использовать при создании нового вида компьютеров. Можно сказать, что исследователи, которые занимаются вопросами квантовых вычислений, готовят теоретическую основу для телепортаций, путешествий во времени либо в параллельные миры.

В контексте классических вычислений есть такое понятие, как 1 бит — это единица представления или хранения информации. Аналогично классическому биту можно определить квантовый бит, который является единицей квантовой информации. Один классический бит может в себе хранить каждый момент времени одно из двух состояний: либо ноль, либо единицу. С физической точки зрения — это наличие или отсутствие электрического сигнала. Как и в классическом случае, в квантовом есть состояния — 0 и 1. Но, в отличие от классических вычислений, 1 кубит может хранить в себе суперпозицию этих состояний. То есть состояние квантового бита в общем случае определяется двумя характеристиками, или двумя параметрами. Первый параметр отвечает за вероятность нулевого состояния, а второй — за вероятность первого состоянии. Квантовый бит в некотором роде — некое вероятностное состояние, однако из него можно извлечь классическую информацию. Для этого используется специальная операция под названием измерение.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Базисные состояния в квантовом случае не являются единственными возможными состояниями. Также есть состояние, к примеру, плюс-минус, и нужно отметить, что базисное состояние зависит от физической реализации квантового бита.

Квантовые вычисления и их отличия от классических

Любые классические вычисления основываются на некоторых классических преобразованиях. То есть это некие действия, которые мы можем предпринимать с классическим видом. К примеру, оператор НЕ инвертирует значение классического бита. То есть если на входе мы получаем 0, то на выходе получаем 1, и наоборот. Для работы с квантовым битом используются квантовые преобразования. Есть одно отличие, которое обособляет квантовые преобразования от классических. Квантовые преобразования являются обратимыми. Действие любого из них можно обратить с помощью некоторого другого также квантового преобразования. И, в отличие от классических вычислений, для квантовых можно определить еще одну операцию под названием «измерение». С помощью этого преобразования мы можем извлекать классическую информацию из квантового бита.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Работу квантового компьютера можно определить с помощью, соответственно, квантовой схемы. Если классическая схема состоит из классических преобразований, то квантовая схема — из квантовых.

Квантовые вычисления, в отличие от классических, являются молодой наукой, но уже есть интересные примеры их применения. К примеру, такая область, как криптография — защита информации, задачи оптимизации хорошо решаются с помощью квантовых компьютеров. При создании реального сопоставимого с классическими компьютерами квантового вычислителя мы сможем решить некоторые задачи быстрее, чем классические компьютеры.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

Идея сверхплотного кодирования заключается в том, чтобы с помощью одного квантового бита передавать два классических бита. Почему же такое кодирование называется сверхплотным? Вспомним черную дыру — это некое физическое тело, вся масса которого схлопывается в одну точку сингулярности. Однако в квантовом случае все намного прозаичнее, речь идет про сжатие данных, причем даже не столь внушительное — просто передача с помощью одного кубита двух классических битов.

Два кубита называются запутанными, если, измеряя или извлекая классическую информацию из первого кубита, мы можем с точностью определить состояние второго кубита. Простой пример: допустим, есть брат и сестра Боб и Алиса. Ежедневно на завтрак или на обед мама им подготавливает контейнер с едой. Она либо кладет салат, либо бутерброд с сыром. При этом ни Алиса, ни Боб, уходя в школу, не знают содержимое контейнера. И только приходя в школу, они открывают свои контейнеры: Алиса видит салат, и уже точно знает, что в контейнере у Боба. Другой более интересный пример — это пара носков. Допустим, вы проснулись утром и хотите надеть носки, надевая один из носков на правую ногу, вы точно будете знать, что второй носок принадлежит левой ноге или будет левым носком. Сверхплотное кодирование как раз-таки основано на явлении запутанности.

Телепортация — физическое перемещение объектов из одного места в другое за короткий промежуток времени. Такое явление придумано в квантовых вычислениях, а в квантовой физике экспериментально продемонстрировано. Однако в данном случае мы перемещаем не все физическое тело, а всего лишь состояние одного кубита. Можно отметить, что дело уже осталось за малым, теперь нужно научиться расщеплять физические тела на элементарные частицы, а далее после передачи с помощью квантового канала связи обратно собирать из них физические тела. Данное явление также основано на явлении запутанности.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

«Допустим, есть советский шпион…»

Следующий пример — это протокол BB84, который относится к области криптографии. Предположим, у нас есть некий советский шпион, цель которого — обмениваться информацией с генеральным штабом. Есть несколько вариантов решения данной задачи. Один из вариантов — использование ключа, с помощью которого шпион мог бы шифровать сообщение, а принимающая сторона — расшифровывать. Есть две проблемы: как получить данный ключ, чтобы никто не смог его подделать, и, во-вторых, как обменяться ключом таким образом, чтобы никто не смог его перехватить. Протокол BB84 решает данную проблему.

что нового в квантовой физике. Смотреть фото что нового в квантовой физике. Смотреть картинку что нового в квантовой физике. Картинка про что нового в квантовой физике. Фото что нового в квантовой физике

В начале шпион имеет некий генератор случайных битов и с его помощью генерирует случайные биты. В качестве квантового бита он использует одиночные фотоны. С их помощью он шифрует или сохраняет классическую информацию в одиночный фотон, назовем его просто кубитом. В данном случае при записи классического бита в кубит может быть использовано два вида базисов. В качестве базисов используются различные поляризации одиночного фотона. Для упрощения действия назовем эти базисы белым и желтым базисом. Что это значит: с помощью белого и желтого мы можем шифровать как значение 0, так и значение 1. Если мы используем желтый базис, то поляризация фотона — диагональная, и она будет хранить значение 0; если на вход мы получаем 1, то используется антидиагональная поляризация, и, следовательно, с помощью нее передаем 1. Если используется белый базис, то с помощью горизонтальной поляризации передается состояние 0, а с помощью вертикальной — 1. Шпион выбирает произвольно эти базисы: ни он, ни кто-нибудь другой не знает, какой именно он выберет. Полученные фотоны с определенной поляризацией передаются в генеральный штаб, который также обладает этими базисами: с их помощью там производят измерение полученного квантового бита. В генштабе не знают, какие именно базисы использовал советский шпион, следовательно, там произвольно выбирают эти базисы. Но, с точки зрения теории вероятностей, в половине случаев они угадают эти базисы. И, следовательно, где-то в половине случаев из всех у них будут совпадать использованные базисы — и полученные и переданные классические биты. Далее генеральный штаб передает те базисы, которые он использовал, а шпион, в свою очередь, сообщает, в каких именно позициях произошло совпадение. Строка, которая была получена из выжатых состояний, и становится ключом. То есть если шпион отправляет 1 000 бит классической информации, то в итоге ключ будет составлять порядка 500 символов, или 500 бит.

Есть третий человек, условный Мюллер, цель которого — подслушать процесс обмена ключом. Как это он делает? Допустим, он тоже знает все те базисы, которые используются шпионом и генштабом. Он становится посередине и начинает принимать одиночные кубиты с помощью своих базисов. Он тоже не знает, какие именно базисы использовал советский шпион, произвольно выбирает между желтым и белым базисом. В 50% случаев он угадает. Следовательно, 50% кубитов уйдут в том же состоянии, в котором и были получены. Однако порядка 50% уйдут уже в измененном состоянии. Как результат, генеральный штаб при получении этих кубитов только в четверти случаев будет получать именно те состояния, которые были отправлены, в принципе, это и будет сигналом того, что их кто-то подслушивает. Если бы их никто не подслушивал, то 50% их ключей бы совпадали. Однако если кто-то будет их подслушивать, только в четверти случаев ключи будут совпадать. Следовательно, первая проблема, которую мы с вами озвучивали, — о том, что как именно сгенерировать ключ, чтобы никто не подслушивал, таким образом и решится. Как только они узнают, что их кто-то подслушивает, то могут поменять канал связи. То есть выбрать уже другой квантовый канал. Вторая проблема: как именно обменяться ключом, чтобы никто не смог перехватить, в данном случае решается сама собой, так как никакой проблемы обмена ключом в данном случае не существует.

Когда появятся реальные квантовые компьютеры

На данный момент квантовые компьютеры уже есть и даже промышленно практически используются. На самом деле это компьютеры, которые в какой-то мере используют квантовые эффекты. Данные вычислители решают ограниченный круг задач и в основном используются для решения некоторых оптимизационных задач. К примеру, компания d-wave — один из разработчиков почти квантовых компьютеров. Среди клиентов данной компании можно назвать таких гигантов, как Google, несколько автоконцернов также используют почти квантовые компьютеры.

На сегодняшний день уже известно несколько разработок, которые ведутся в создании реальных квантовых компьютеров. Буквально год назад была разработана экспериментальная модель квантового компьютера, который работает с двумя кубитами. Для решения реальных задач данные квантовые компьютеры тоже не подходят, однако важно отметить, что их работа хорошо демонстрирует работу тех принципов, на которых теоретически основываются квантовые вычислители.

В 2019 году был представлен квантовый компьютер, состоящий и работающий с 20 кубитами. Данный компьютер используется чисто для демонстрации того, что принципы квантовых вычислений работают. Это можно сравнить с двумя мегабайтами, к примеру, оперативки в современном мире, то есть, в принципе, это ни о чем.

Сейчас высказываются гипотезы, что квантовая запутанность и явление кротовых нор — одно и то же явление. Более того, кротовые норы сами по себе основаны на таком явлении, как квантовая запутанность. Это говорит о том, что в будущем, как вариант, можно будет создавать кротовые норы уже искусственным путем. То есть запутывая некие квантовые биты между собой.

Как измерить квантовый бит

Существует три взгляда на измерение квантового бита. Первый взгляд — это копенгагенская теория, классический взгляд на процесс измерения. Она гласит, что с помощью измерения мы, получая некий классический результат, влияем на измеряемый кубит. Если рассматривать в контексте электрона, то измерение электрона представляется в виде некой волны — то есть это некая волновая функция. Но измерение приводит к тому, что данная волновая функция схлопывается, и мы имеем дело уже с частицей. Важно упомянуть про неопределенность Гейзенберга, которая гласит: что мы не можем знать про волновую функцию и местоположение электрона одновременно. То есть если мы будем измерять электрон, то потеряем характеристики волновой функции. И наоборот, зная характеристики волновой функции, мы не можем определить местоположение электрона.

Второй взгляд — это теория Дэвида Бома, которая гласит, что мы просто владеем не всей информации о системе, а в реальности и до измерения, и после измерения волновая функция никуда не девается. Просто есть некие скрытые параметры, которых мы не знаем. И зная эти дополнительные характеристики, мы можем установить как точное местоположение электрона, так и характеристики волновых функций. Это можно сравнить с подбросом обычной монеты. Если рассматривать с классической точки зрения, подброс монеты считается процессом рандомным, то есть результат нельзя предсказать. Однако, с точки зрения физики, мы можем с точностью определить, зная некоторые дополнительные характеристики, какой именно стороной упадет монета. К примеру, начальную силу удара либо силу сопротивления воздуха и так далее.

И третий взгляд на процесс измерения — это теория множественных миров. Данную теорию высказал Хью Эверетт. Она гласит, что при измерении происходит некое расщепление физического мира. И та ипостась, которую мы наблюдаем, местоположение электрона, реальна только в нашем мире. Параллельно создаются другие миры, в которых реальна уже другая ипостась электрона. Развивая теорию Эверетта, один из создателей квантовых вычислений в своё время сказал, что, таким образом, сама Вселенная является неким квантовым компьютером и производит вычисления.

Причиной появления постквантовой криптографии стал был теоретический квантовый алгоритм, позволяющий взломать существующие системы шифрования. Одна из них является основой безопасности многих интернет-банкингов, а также основой шифрования веб-сайтов. Предположим, есть советский шпион, цель которого — передавать информацию в генштаб, а есть третья сторона, которая может это все подслушивать. До этого мы рассматривали шифрование с помощью одного ключа, но в данном конкретном случае предлагается другой метод. Есть протокол RSA, цель которого следующая: генерируется два ключа — открытый ключ и закрытый; с помощью закрытого ключа производится расшифровывание полученного сообщения, а с помощью открытого — шифрование. Данный протокол позволяет реализовывать данный алгоритм, то есть создавать открытый и закрытый ключи.

В конце XX века Питером Шором был предложен новый алгоритм, позволяющий взломать основу алгоритма RSA. Данный алгоритм является полностью квантовым, и, следовательно, возникновение реально работающего квантового компьютера позволит взломать современные системы защиты. Как результат возникла новая наука, которая рассматривает новые алгоритмы, чтобы сделать устойчивые методы шифрования к взлому квантовым компьютером.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *