что больше правильная или неправильная дробь

Правильные и неправильные дроби. Сравнение дробей

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Если числитель дроби равен знаменателю, то дробь равна единице.

В буквенном виде этот вывод можно записать так:

$\frac$ = 1

где m − натурально число.

А может ли возникнуть такая «неправильная» ситуация, когда числитель дроби окажется больше знаменателя?

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Дробь, у которой числитель меньше знаменателя, называют правильной.

Дробь, у которой числитель больше знаменателя или равен ему, называют неправильной.

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Этот пример иллюстрирует следующее свойство дробей.

Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше, а меньше та, у которой числитель меньше.

Эти примеры иллюстрируют следующее свойство.

Все правильные дроби меньше единицы, а неправильные − больше или равны единице.

Это свойство позволяет сделать следующий вывод.

Каждая неправильная дробь больше любой правильной дроби, а каждая правильная дробь меньше любой неправильной дроби.

Отметим, что на координатном луче из двух дробей большая дробь расположена правее меньшей.

Этот пример иллюстрирует следующее свойство дробей.

Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше.

Источник

Правильные и неправильные дроби.

Виды дробей.

Как вы уже заметили дроби бывают разные. Например, \(\frac<1><2>, \frac<3><5>, \frac<5><7>, \frac<7><7>, \frac<13><5>, …\)

Делятся дроби на два вида правильные дроби и неправильные дроби.

В правильной дроби числитель меньше знаменателя, например, \(\frac<1><2>, \frac<3><5>, \frac<5><7>, …\)

В неправильной дроби числитель больше или равен знаменателю, например, \(\frac<7><7>, \frac<9><4>, \frac<13><5>, …\)

Правильная дробь всегда меньше единицы. Рассмотрим пример:

Единицу мы можем представить как дробь \(1 = \frac<3><3>\)

Знаменатели одинаковые равны числу 3, далее сравниваем числители.

Вопросы по теме “Правильные или неправильные дроби”:
Может ли правильная дробь быть больше 1?
Ответ: нет.

Может ли правильная дробь равна 1?
Ответ: нет.

Может ли неправильная дробь меньше 1?
Ответ: нет.

Пример №1:
Напишите:
а) все правильные дроби со знаменателем 8;
б) все неправильные дроби с числителем 4.

Решение:
а) У правильных дробей знаменатель больше числителя. Нам нужно в числитель поставить числа меньшие 8.
\(\frac<1><8>, \frac<2><8>, \frac<3><8>, \frac<4><8>, \frac<5><8>, \frac<6><8>, \frac<7><8>.\)

б) В неправильной дроби числитель больше знаменателя. Нам нужно в знаменатель поставить числа меньшие 4.
\(\frac<4><4>, \frac<4><3>, \frac<4><2>, \frac<4><1>.\)

Пример №2:
При каких значениях b дробь:
а) \(\frac<12>\) будет правильной;
б) \(\frac<9>\) будет не правильной.

Решение:
а) b может принимать значения 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
б) b может принимать значения 1, 2, 3, 4, 5, 6, 7, 8, 9.

Задача №1:
Сколько минут в часе? Какую часть часа составляет 11 мин.?

Ответ: В часе 60 минут. Три минуты составят \(\frac<11><60>\) часа.

Источник

Сравнение дробей, как правильно

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Сравнение дробей с одинаковыми знаменателями

Как и при любом другом сравнении, суть сравнения дробей — в том, чтобы определить меньшую и большую дроби.

Нет ситуации более благоприятной для сравнения, чем дроби с одинаковыми знаменателями. Если вся разница между дробями только в числителях, пользуемся следующим правилом:

Из двух дробей с одинаковыми знаменателями больше дробь с большим числителем. А меньше будет та дробь, числитель которой меньше.

А теперь на примерах.

Пример 1. Сравните дроби:

Пример 3. Сравните дроби:

Как видите, нет ничего сложного в сравнении дробей, если знаменатели равны. Вся задача заключается в том, чтобы определить больший и меньший знаменатель.

Давайте разберем наглядный пример сравнения дробей:

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Допустим, в торте 6 кусков. Если от целого торта отрезать один кусок — в торте останется 5 кусков.

Понять, что целый торт больше, чем торт без одного куска, можно и без сравнения дробей. Но это же самое правило можно применить и при менее очевидных сравнениях, которые часто встречаются в повседневной жизни.

Сравнение дробей с одинаковыми числителями

Вы уже разобрались со сравнением дробей с одинаковыми знаменателями. Теперь задача чуть усложняется — научимся сравнивать дроби с разными знаменателями, но с одинаковыми числителями.

Если у двух дробей одинаковые числители, то больше будет та дробь, чей знаменатель меньше. А меньше будет дробь с большим знаменателем.

А теперь наши любимые примеры. Погнали!

Пример 1. Сравните дроби:

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Пример 3. Сравните дроби:

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Сравнение дробей с разными числителями и разными знаменателями

Нет ничего хитрого в сравнении дробей с одинаковыми числителями или знаменателями. Чуть больше усилий потребуется при сравнении дробей, в которых нет ничего одинакового.

Сначала вспомним, как привести дроби к общему знаменателю.
Рассмотрим пример дробей с разными знаменателями.

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Давайте потренируемся в сравнении дробей.

Пример 1. Сравните дроби:

При сравнении неправильных дробей, помните, что неправильная дробь всегда больше правильной.

Пример 2: Сравните дроби:

Вычитание смешанных чисел

Вычитание проходит гладко, когда уменьшаемое больше вычитаемого.

В случае, если вычитаемое больше уменьшаемого, разность оказывается отрицательной. В этом нет ничего страшного. Но математика в 5 классе — «положительная», поэтому научимся находить разность смешанных чисел, не скатываясь «в минусы».

При вычитании дробей действует тот же самый принцип: вычитаемое должно быть больше уменьшаемого. Вот здесь то вам и пригодится навык сравнивать дроби.

Пример 1. Найдите разность:

Вычитаемая дробь меньше уменьшаемой

Пример 2.Найдите разность:

Если знаменатели одинаковые — больше та дробь, числитель которой больше.

Примеры для самопроверки

Теория — это, конечно, хорошо. Но без практики — никуда. Пора потренироваться в решении примеров и закрепить тему сравнения дробей.

Пример 1. Сравните дроби:

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Ответ: по правилу сравнения дробей с одинаковыми знаменателями, больше та дробь, у которой числитель больше. Это значит, что

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Пример 2. Сравните дроби:

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Ответ: по правилу сравнения дробей с разными знаменателями и одинаковыми числителями, больше та дробь, чей знаменатель меньше. Это значит, что

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Пример 3. Сравните дроби:

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Ответ:что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь.

Источник

Какую дробь называют правильной в математике

Правильная дробь — что это такое в математике

Дробью в математике называют число, в состав которого входит одна либо несколько равных частей (или долей) от единицы.

Виды дробей в зависимости от формы записи:

Здесь число, которое расположено над чертой, является числителем. Под чертой расположен знаменатель. Числитель представляет собой делимое, а знаменатель играет роль делителя.

Правильная дробь — дробь с числителем, модуль которого меньше по сравнению с модулем знаменателя.

Неправильная дробь — дробь с числителем, модуль которого больше, чем модуль знаменателя, либо равен ему.

Любое число, которое является целым и не равно нулю, можно записать, как неправильную обыкновенную дробь. Знаменатель при этом будет равен 1.

Основное свойство дроби можно сформулировать таким образом: когда числитель и знаменатель, которые принадлежат одной дроби, умножают, либо делят на одно и то же число, дробь не поменяется, изменится лишь ее запись. К примеру:

1 5 = 1 × 2 5 × 2 = 2 10

Чем отличается правильная от неправильной и смешанной, как определить

Правильная дробь отличается тем, что имеет числитель, который меньше знаменателя.

В качестве наглядного примера можно записать правильные дроби:

Заметим, что во всех записанных случаях числитель меньше, чем знаменатель.

По сравнению с неправильной дробью правильная дробь всегда меньше 1. Тогда как неправильная дробь больше, либо равна 1.

Сравнение разных типов дробей:

Действия с правильными дробями, как найти

Правильные дроби можно встретить при решении множества задач по математике. Для них предусмотрены все действия, которые выполняют с обыкновенными дробями.

Приведение к общему знаменателю

Перед тем, как сравнить, сложить или вычесть дроби, требуется выполнить их преобразование. В результате арифметических действий дроби должны пробрести одинаковые знаменатели. К примеру, имеется пара дробей:

В результате знаменатели первой и второй дроби становятся одинаковыми и равными M. Допустимо заменить минимальное единое кратное при решении несложных примеров на какое-либо другое общее кратное. К примеру, таким кратным может стать произведение знаменателей.

Сравнение

С целью сравнения пары обыкновенных дробей необходимо выполнить операцию приведения их к единому знаменателю. Далее следует сравнить числители дробей, которые в итоге получились. Если числитель больше, то и дробь считается больше.

Далее необходимо привести дроби к знаменателю, равному 20.

3 4 = 15 20 ; 4 5 = 16 20

Сложение и вычитание

Прибавить одну обыкновенную дробь к другой обыкновенной дроби можно. Но перед этим требуется выполнить приведение этих дробей к единому знаменателю. После такой операции находят сумму числителей, а знаменатели оставляют без изменений.

1 2 + 1 3 = 3 6 + 2 6 = 5 6

НОК знаменателей для 2 и 3 составляет 6. Следует привести дробь 1 2 к знаменателю 6. Чтобы получить такой результат, необходимо выполнить умножение числителя и знаменателя на 3. В результате получим:

Затем требуется привести дробь 1 3 к аналогичному знаменателю. При этом нужно выполнить умножение числителя и знаменателя 2. Получим в итоге:

Похожий алгоритм действий предусмотрен для вычитания дробей. Перед тем, как посчитать их разность, следует привести дроби к общему знаменателю. Далее вычитают числители. Знаменатель при этом не меняется.

1 2 — 1 4 = 2 4 — 1 4 = 1 4

НОК знаменателей 2 и 4 составляет 4. Выполняя приведение дроби 1 2 к знаменателю 4, необходимо найти произведение числителя, знаменателя и числа 2. В результате получим:

Умножение и деление

При умножении двух обыкновенных дробей требуется выполнить умножение их числителей и знаменателей:

Рассмотрим частный случай умножения дроби на натуральное число. Для этого следует найти произведение числителя и данного числа, а знаменатель остается без изменений.

Когда числитель и знаменатель полученной дроби не являются взаимно простыми, необходимо такую дробь сократить:

5 8 · 2 5 = 10 40 = 1 4

В процессе деления одной обыкновенной дроби на другую требуется выполнить умножение первой дроби на дробь, которая является обратной для второй:

Возведение в степень и извлечение корня

Дроби можно возводить в степень. При этом необходимо выполнить арифметическое действие возведения в степень отдельно со знаменателем и числителем этой дроби:

2 3 3 = 2 3 3 3 = 8 27

Из дробей можно извлекать корень. Для того чтобы справиться с подобной задачей, необходимо извлечь заданный корень отдельно из числителя и знаменателя:

Перевод других видов дробей в правильную форму

Для того чтобы перевести неправильную дробь в правильную, либо для выполнения обратного действия, требуется соблюдать определенный порядок. Прямой перевод невозможен. Результатом подобной операции будет являться преобразованная запись, которая содержит в себе целую, а также дробную части. Последовательность действий:

С помощью достаточно простого метода удобно переводить числа из одной формы в какую-либо другую. Данный алгоритм можно записать в виде математического уравнения:

n a ÷ b = ( ( n × b ) + a ) ÷ b

Смешанное отношение представляет собой сумму из целого и части. Для того чтобы понять, как преобразовать дроби, следует выполнить сложение в качестве арифметического действия. В процессе первое слагаемое нужно записать в виде неправильной дроби путем деления целого на 1. Далее целесообразно воспользоваться правилом сложения дробей. Выполняется поиск общего знаменателя, дополнительных множителей, сложение в числителе. Формула имеет такой вид:

n a ÷ b = n ÷ 1 + a ÷ b = ( ( n × b ) + a ) ÷ b

Неправильную дробь превратить в обычную можно с помощью перевода ее в смешанную. В процессе выражение записывают в виде суммы натурального числа и правильной дроби:

Более простой способ преобразования дробей заключается в представлении делимого, как суммы дробей. При этом важно, чтобы при делении одной из них не было остатка:

m ÷ n = ( k + c ) ÷ n = k ÷ n + c ÷ n

Примеры задач с решением

В учебнике 100 листов. Ученик прочел ½ от общего количества страниц. Необходимо определить число листов, которые прочитал ученик.

Ответ: ученик прочитал 50 листов в учебнике.

Имеется емкость из стекла, наполненная водой, весом 550 гр. Половину воды вылили, а масса оставшейся составила 300 гр. Требуется рассчитать начальный вес воды и массу пустой емкости.

Значение массы воды, которую вылили:

250 гр. является половиной от всей воды, тогда вся вода весит:

Ответ: сначала в емкости было 500 гр. воды, массы емкости составляет 50 гр.

В кассе хранится сумма в 450 рублей. Необходимо определить количество денег в кассе после изъятия 1/3 от всей суммы.

Источник

Сравнение неправильных дробей правила и примеры.

Неправильные дроби сравниваем по тем же правилам, что и обыкновенные дроби или правильные дроби. Рассмотрим подробно эти правила.

Сравнение неправильных дробей с одинаковыми знаменателями.

Есть несколько правил сравнения неправильных дробей с одинаковыми знаменателями:

Рассмотрим пример:
Выполните сравнение неправильных дробей с одинаковыми знаменателями: а) \(\frac<20><13>\) и \(\frac<15><13>\) б) \(\frac<-161><57>\) и \(\frac<-98><57>\) г) \(\frac<17><3>\) и \(\frac<-11><3>\)

Решение:
а) Раз у дробей \(\frac<20><13>\) и \(\frac<15><13>\) одинаковые знаменатели переходим к сравнению числителей 20>15,

Сравнение неправильных дробей с одинаковыми числителями.

Пример:
Выполните сравнение неправильных дробей с одинаковыми числителями: а) \(\frac<21><9>\) и \(\frac<21><10>\) б) \(\frac<-15><3>\) и \(\frac<-15><4>\)

Решение:
а) У неправильных дробей с одинаковыми положительными числителями \(\frac<21><9>\) и \(\frac<21><10>\), та дробь больше, где знаменатель меньше 9 \frac<21><10>\)

б) У неправильных дробей с одинаковыми отрицательными числителями \(\frac<-15><3>\) и \(\frac<-15><4>\), та дробь больше где знаменатель больше 3 44, следовательно,

Сравнение неправильной дроби с правильной дробью.

Пример:
Сравните правильную дробь и неправильную дробь: а) \(\frac<14><13>\) и \(\frac<13><14>\) б) \(-\frac<27><6>\) и \(-\frac<17><18>\)

Решение:
а) Правильная и неправильная дробь положительны, поэтому неправильная дробь больше правильной дроби.

б) Правильная и неправильная дробь отрицательны, поэтому неправильная дробь меньше правильной дроби.

б) Неправильная дробь \(-\frac<4><3>\) отрицательна, поэтому \(0 1\)

Равные неправильные дроби.

Правило равных неправильных дробей:

Неправильные дроби равны тогда, когда при одинаковых знаменателях равны их числители. Например:

You may also like:

что больше правильная или неправильная дробь. Смотреть фото что больше правильная или неправильная дробь. Смотреть картинку что больше правильная или неправильная дробь. Картинка про что больше правильная или неправильная дробь. Фото что больше правильная или неправильная дробь

Сравнение рациональных чисел, определения и примеры.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *