что больше греется фаза или ноль
Почему греется нулевой провод
Нагрев нулевого провода может привести к его отгоранию и аварии в электросети. Чаще всего это происходит при неравномерном распределении нагрузок по фазам в трехфазной электросети и из-за плохого контакта. В этой статье мы расскажем почему греется нулевой провод и что делать в этой ситуации.
Ток в трёхфазной цепи
Чтобы причины нагрева нуля нужно понять, как работает трехфазная сеть. Нагрузка в трёхфазной сети может быть соединена звездой и треугольником, также могут быть соединены обмотки питающего трансформатора. У обмотки есть два вывода — конец и начало.
Если концы обмоток трехфазного трансформатора соединяются в одной точке — тогда говорят, что это схема соединения звездой. В точке их соединения (О), согласно законам Кирхгофа, ток будет всегда равен нулю, то есть перетекать от фазы к фазе. Если нагрузка в каждой из фаз (a, b, c) одинакова, то будут равны и напряжения на началах обмоток (A, B, C) как и ток в них. Что проиллюстрировано на векторной диаграмме ниже, где фазы токов и напряжений обозначены векторами и сдвинуты на треть периода друг относительно друга (120 градусов).
Симметричной называют такую трехфазную нагрузку, у которого сопротивление нагрузки (соответственно и потребляемый ток или мощность) каждой из трех фаз одинаково.
Но как только ток в фазах начинает отличаться, когда нагрузка по фазам отличается мощностью, то и напряжения на фазах начинают отличаться друг от друга. Это называется перекосом фаз.
Чтобы решить эту проблему к точке соединения звезды трансформатора подключают точку соединения звезды нагрузки. Это называется нейтраль, или нулевой провод, или просто ноль.
Электроснабжение в быту для чайников
Мы плавно подошли к практике, при подключении однофазных потребителей в трёхфазную сеть нагрузки зачастую неравны, то есть несимметричны.
Такое зачастую встречается в многоквартирных домах. В дом заводятся три фазы и ноль, в каждую квартиру заводится одна фаза и ноль. В одной квартире включён только холодильник и лампочка, в другой работает мощный электрообогреватель, а в третьей вообще ничего не включено. То есть нагрузки в фазах не одинаковы. В настоящее время часто в квартирах встречается и трёхфазный ввод, но ситуация от этого не изменяется.
В частных домах ситуация аналогична — на улице по опорам проходит трехфазная ЛЭП, а в дома заводится 1—3 фазы и ноль.
Что будет если ухудшится контакт в нулевом проводе или он отгорит? Перекос фаз и ток в нуле:
Всё-таки почему греется
В результате неравномерного распределения нагрузки по фазам в домах и квартирах по нулевому проводнику начинает протекать ток. Вы замечали, что в толстых 4 жильных кабеля 3 «фазных» жилы с одинаковой площадью поперечного сечения, а четвертая жила «нулевая» или «земляная» обычно тоньше?
Это как раз-таки связано с тем, что при симметричной нагрузке по ней вообще не будет протекать ток, а при не симметричной нагрузке ток должен быть меньше чем в фазной жиле. Но так бывает не всегда.
При нелинейных нагрузках, а также нагрузках, которые потребляют ток прерывисто (импульсные блоки питания, а они сейчас используются повсеместно) токи в фазах не компенсируют друг друга, к тому же они насыщаются различными гармоническими составляющими. Всё это является причиной того, что токи в точке соединения звезды просто не компенсируются и может оказаться так, что ток в нулевом проводе будет больше чем в фазном.
При протекании электрического тока проводник нагревается, это безупречная работа закона Джоуля-Ленца на практике. Он гласит, что чем больше сопротивление проводника и чем дольше протекает электрический ток, тем больше выделится тепла на нём.
Также вспомним, о том, что чем меньше сечение проводника и чем больше его длина, тем больше сопротивление. Кроме того, от качества контактов на соединении клемм и проводов также зависит переходное сопротивление. Простыми словами, чем больше площадь соприкосновения контактов и чем сильнее они прижаты друг к другу – тем меньше переходное сопротивление и тем меньше их нагрев.
В таком контакте как на рисунке ниже поверхности плоские, площадь будет равна площади наконечника, касающейся шайбы, плюс сопротивление самой шайбы и площадь её соприкосновения с медной шиной. Если все составляющие в хорошем состоянии, не имеют окислов и нагара – итоговое переходное сопротивление будет низким.
Если поверхности подгорели, окислены или ржавые, контакт получается таким как изображено на иллюстрации ниже. Здесь явно видно, что касания происходят в отдельных точках, а не по всей площади.
В клеммниках типа ВАГО и других пружинных клеммниках площадь касания пластины с круглой токопроводящей жилой достаточно маленькая, поэтому основная сфера применения таких клеммников — цепи с током 8-16 Ампер, за редкими случаями, когда клеммник конструктивно способен пропустить больший ток.
В винтовых клеммниках и шинах площадь контакта в большей степени определяется площадью винта, которым прижимается токопроводящая жила. Ниже вы видите клеммники в полиэтиленовой оболочке.
Поэтому при аналогичном принципе действия клеммная колодки на карболитовом основании обеспечивают контакт лучше, за счет прижимной квадратной пластины-шайбы. Кроме того, вы можете сделать кольцо из провода и обернуть им винт или использовать наконечники типа НКИ.
Если вам интересны способы и средства для соединения проводов – пишите в комментариях и мы сделаем обзор всех видов с перечислением преимуществ и недостатков каждого из них.
Где греется
Почему греется ноль мы разобрались, а теперь давайте разберемся где это происходит чаще всего. В первую очередь ноль может отгореть в распределительном щите на вводе в здание. Это самая распространенная ситуация, потому что в этом месте на нулевой провод ложится нагрузка со всех квартир и со всех трёх фаз.
Далее часто возникают проблемы на нулевой шине в подъездном электрощите. Если шины вообще есть, и не подсоединено как на фотографии ниже.
Часто шина закреплена непосредственно на корпусе подъездного электрощита, тогда это выглядит так как показано ниже.
В клеммниках автоматических выключателей греется ноль, вплоть до обугливания частей его корпуса.
Если у вас старая электропроводка и установлены пробки с предохранителями или автоматические пробки, то обратите внимание как на винтовые клеммники, так и на сам цоколь пробки. Резьба и центральный контакт могут окисляться и подгорать, что проиллюстрировано на рисунке ниже.
Общие шины очень часто подвержены проблеме подгорания нуля. Это связано с их устройством и соблюдением правил работы с ними. Винтовой способ подключения проводников, хоть и безусловно удобен, но такие контакты нужно хотя бы изредка ревизировать – зачищать и протягивать, иначе вы получите то что изображено на рисунке ниже.
А в нормальном состоянии она должна выглядеть так:
Решение проблем вызванных нагревом простое — зачистить контакты, проводники и заново протянуть. Если клеммник был сильно перегрет — заменить его, если провод грелся в автомате, возможно автомат тоже нужно будет заменить!
Что происходит дальше и как избежать последствий?
По мере нагрева начинает подгорать и ухудшаться контакт. Ослабевают винтовые зажимы в связи с тепловым расширением и последующим охлаждение после снятия нагрузки. Это вызывает лавинообразный процесс роста сопротивления и нагрева соединения. В результате ноль рано или поздно отгорает полностью. При этом внешне может казаться что он всё еще находится в клеммнике, а фактически все прилегающие поверхности будут покрыты слоем окислов и нагара.
После чего происходит то явление о котором мы говорили в начале статьи – перекос фаз.
О том что ноль скоро отгорит можно косвенно судить по участившимся просадкам и возрастаниям напряжения, особенно если у вас выполнен трёхфазный ввод и установлены вольтметры или реле напряжения и индикацией величины напряжения в сети. Если напряжения постоянно стабильны (или отклонения несущественны) – у вас всё впорядке с проводкой.
При перекосе фаз нагрузка, в нашем случае частные дома или квартиры оказываются включенными последовательно на 380 Вольт. Напряжения распределятся согласно закону Ома – там где будет включена бОльшая нагрузка – напряжение просядет (сопротивление нагрузки маленькое), а в той квартире где включен минимум электроприборов напряжение повысится (сопротивление нагрузки высокое).
Последствием перекоса фаз в лучшем случае будет отгорание проводников на вводе, выбивание автомата и прочее. В худшем случае из-за возросшего тока может оплавиться изоляция электропроводки и произойти возгорание.
Чтобы обезопасить своё жильё от последствий отгорания нуля рекомендуем установить реле контроля напряжения, а еще лучше в паре с УЗИП. Стабилизатор напряжения на вводе в квартиру в этой ситуации может не решить проблему и сам выйти из строя.
Схему подключения реле напряжения вы видите ниже.
В качестве таких устройств мы можем порекомендовать популярные модели:
УЗМ-50Ц (комбинированное устройство с функцией вольт-амперметра);
Digitop VA-32 (недорогой, но надёжный вариант, модель может отличаться в зависимости от номинального тока);
Почему греется ноль в электропроводке
Опубликовано 10.04.2020 · Обновлено 10.11.2021
Причины, из-за которых греется ноль в электропроводке
Нагрев нулевого проводника в электропроводке — это самая распространённая проблема для старых домов. Тем не менее, данная проблема достаточно серьёзная, поскольку она может привести к отгоранию нуля, что приведёт к перекосу фаз.
Какие причины вызывают нагрев нуля в электропроводке? С чем это связано, и как бороться с данной проблемой? Сегодня на сайте Электрик САМ мы расскажем, почему греется ноль в электропроводке.
Преимущества струбцины варьируются от самых разных отраслей промышленности. Если вы хотите купить струбцину угловую для сварочных работ тогда вам надо сюда здесь об этом знают всё. Чем струбцины отличаются и как работают на большие нагрузки. Чем отличаются от обычных зажимов. Эти зажимы используются во многих отраслях промышленности, таких как столярная, сварочная, автомобильная и т. д.
Причины, из-за которых греется ноль в электропроводке
Существует несколько основных причин, которые могут вызвать нагрев рабочего нуля в электропроводке.
В первую очередь это:
Если контакт будет ненадёжен, то это приведёт к его неизбежному нагреванию. Данное явление характерно для старой электропроводки, где соединяются алюминиевые и медные проводники. Все это приводит к окислению соединения и к возрастанию его сопротивления. В итоге, контакт отгорает и приводит к появлению ещё больших проблем.
Кроме того, перегрев нуля в электропроводке способно вызвать и большое количество электропотребителей с импульсными блоками питания. Связано это с тем, что импульсные блоки питания создают большие нагрузки на рабочий ноль, чем на фазу.
Это те электропотребители, которые способны создавать нелинейную нагрузку.
К ним, в первую очередь, относятся:
Чтобы не допустить отгорание рабочего нуля вследствие нелинейных нагрузок, очень важно учитывать не только сечение фазного проводника, но и нулевого.
Что может произойти при обрыве нуля
Обрыв рабочего нуля ничего хорошего не сулит. Ранее об этом уже рассказывалось на сайте elektriksam.ru. Обрыв неизбежно приведёт к перекосу фаз, из-за чего в однофазной сети может появиться 380 Вольт. Само собой разумеется, что вследствие этого практически все электроприборы в доме выйдут из строя, а доказать кому-то данный факт, будет практически невозможно.
И если такая проблема имеет место быть, то следует заранее подумать о защите от перекоса фаз. Наиболее предпочтительным в данном случае устройством, является реле напряжения. Этот небольшой электронный прибор может быть установлен на весь дом или квартиру. Он следит за тем, чтобы напряжение в домашней электросети не подпрыгнуло выше установленных значений.
В таком случае, вы будете надёжно защищены от перекоса фаз, даже в случае обрыва нуля.
Почему греются провода электропроводки
Две фазы в розетке, причины и решение
К трехфазной сети подключены однофазные электроприемники. Нагрузка распределена равномерно по фазам. Чему будет равен ток в нулевом проводе, если он общий для всех трех фаз.
Это если схема подключения нагрузки звезда с нулевым проводом. Но лучше бы конечно взглянуть на схемку. Да, это схема звезда с нулевым проводом. А после точки соединения всех нулей ток равен сумме токов? Питающий кабель пятижильный, далее на каждую нагрузку идет фаза А и ноль, фаза В и ноль, фаза С и ноль.
Но из этого же не следует, что ток в нулевом проводе в три раза больше, чем в фазном? Напряжение в трехфазной сети сдвинуто по фазам на градусов. Здесь нужно не просто складывать значения токов, а брать векторную сумму. Возьми лист бумаги и ручку, поставь точку и отложи по окружности из этой точки три вектора радиуса через градусов.
Вектора суммируются путем параллельного переноса, то есть начало одного вектора совмещаем с окончанием другого. Если вектора образуют замкнутый контур, то их сумма равна нулю.
Отечественный и мировой опыт успешного строительства и ремонта заземляющего устройства без дополнительного расширения его площади и дополнительного использования металла! Видео: Розеточные блоки Unica System для удобного подключения гаджетов. В Беларуси подготовлены типовые проекты для электродомов.
Новый вид трубы для подземной прокладки кабеля. Задаем вопросы! Соблюдать или не соблюдать? Вот в чем вопрос Альбом типовых решений и конфигуратор для подбора электротехнических лотков. Молниезащита в нетиповых проектных решениях.
Почему греется нулевой провод?
Отгорание нуля в однофазной сети, то есть в пределах одного дома или квартиры не принесет вреда бытовой технике. В этом случае пропадёт напряжение сети В, а фазный провод останется под потенциалом. В другом варианте, когда произойдёт отгорание нуля в трехфазной сети, может не выдержать бытовая техника повышенного напряжения. При отгорании нуля в трехфазной сети, напряжение в квартире может достигнуть В. Такого напряжения, не выдержит ни один бытовой прибор. Как известно к электрощиту на площадке вашего этажа подведен четырех жильный трехфазный кабель. Три фазы, которого распределяются по квартирам равномерно, а нулевой провод сечение его в 2 раза меньше фазного является общим для всех квартир.
Роль нулевого провода при неравномерной нагрузке
Если нагрузка на каждой фазе будет разной — то необходимо обязательно подключать нулевой провод.
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость
В случае его обрыва или внезапного повышения сопротивления на нём, напряжение распределится согласно потребляемым мощностям на каждую из нагрузок трёхфазной цепи и, соответственно, чем меньше потребляемая мощность — тем большее фазное напряжение получит потребитель тока.
Это неприемлемо для многих электроприборов и может вызвать их неисправность и даже пожар, именно для избегания таких неприятностей к каждой розетке подведён нулевой провод.
Понятие электрического отгорания нуля
Помощь — Поиск — Пользователи — Календарь. Перейти к полной версии этой страницы на форумах сайта Электрик: Ток в нулевом проводе. От ТП отходят две воздушные линии, каждая на отдельную улицу, фазы разные, по 1 фазе на улицу. В месте пересечения улиц и до ТП эти линии имеют один общий нулевой проводник, равный сечению фазных проводников, мною електрику было предложено увеличить сечение этого нулевого провода в двое для уменьшения потерь напряжения и разгрузки этого участка, на что он ответил что это не даст эфекта поскольку ток от 2х фаз взаимно компенсирует друг друга и поэтому в точке обеденения нулевых проводников и далее к ТП сила тока минимальная или вобще отсутствует. Насколько я думал для такого случая необходимо 3 фазы, поэтому вопрос — если представить что в нулевой провод попадает одинаковый ток двух разноименных фаз компенсирует ли он друг друга в следствии чего тока почти нет или нет? Ток в нулевом проводе будет равным нулю, если работают все 3 фазы с одинаковой нагрузкой в каждой фазе.
Почему ток в нулевом (нейтральном) проводе может превысить ток в фазном проводе
В трехфазной системе, при симметричной линейной нагрузке (например трехфазный электродвигатель) ток в нулевом проводе отсутствует. В реальности идеальной симметрии не существует, ток в нулевом проводе будет присутствовать, но он будет меньше фазных (если совсем отключить нагрузку с двух фаз он станет равен току оставшейся фазы). Поскольку ток в нулевом проводе был меньше тока в фазном проводнике (раньше было мало нелинейных нагрузок), то для экономии нулевой проводник делался тоньше фазных, теперь сечение нулевого проводника совпадает с сечением фазного.
Поскольку от перегрузки по току защищаются только фазные повода, перегрузка нулевого (нейтрального) провода может привести к его повреждению, «отгоранию нуля» — что может привести к значительному перекосу фазных напряжений и повреждению потребителей. Получается, что мощные потребители с несинусоидальным входным током (нелинейные нагрузки) могут не только вызывать искажение формы напряжения сети и «загрязнять» сеть помехами, но и привести к аварийной ситуации, выведя из строя кабель и других потребителей.
Примеры нелинейных нагрузок, способных вызвать рост тока в нулевом проводнике (если в них нет корректора коэффициента мощности): Газоразрядные лампы Светодиодные лампы Дуговые и индукционные печи Трансформаторы работающие в режиме насыщения Компьютеры, мониторы, оргтехника Телевизоры Инверторные кондиционеры Источники бесперебойного питания Микроволновые печи Импульсные блоки питания, инверторы, преобразователи частоты Электродвигатели с регуляторами скорости вращения (инверторами)
Форма тока, потребляемого нелинейной нагрузкой, значительно отличается от чистой синусоиды (совсем на нее не похожа). Математически форму несинусоидального тока можно представить в виде суммы, уменьшающихся по амплитуде, синусоид кратных частоте питающего напряжения (50 Гц, 100 Гц, 150 Гц, 200 Гц….).
ГОСТ 30804.4.30-2013 предписывает учитывать гармоники не менее 40-го порядка. Но только гармоники, кратные третьей (остальные взаимно компенсируются складываясь), суммируются в нейтральном проводнике и вызывают весьма значительный ток, к которому еще добавляется ток обусловленный несимметрией питающего напряжения, его несинусоидальностью и несимметрией нагрузки. Основной вклад вносит третья гармоника (в нейтрале течет ток с частотой 150 Гц) — прочие гармоники малы.
ГОСТ Р 50571.5.52-2011: предлагает узнать ток и в нулевом проводнике и выбрать сечение всех проводников по наиболее нагруженному проводу; следует указать, что ситуация ухудшается, если в трехфазной системе нагружены только две фазы. В этом случае ток высших гармоник в нейтральном проводнике будет суммироваться током дисбаланса; если доля третьей гармоники превышает 33%, необходимо увеличить площадь поперечного сечения нейтрального проводника.
Фразу об «отгорании нуля
» слышал, наверное, каждый из нас. Почему же таинственный ноль имеет тенденцию всё время отгорать? Для того чтобы внести некоторую ясность в этот вопрос, необходимо вспомнить кое-что из курса физики средней школы.
Для однофазной цепи «ноль» — это просто название для проводника, не находящегося под высоким потенциалом относительно земли. Второй проводник в однофазной цепи называется «фазой» и имеет относительно земли высокий потенциал переменного напряжения (в нашей стране чаше всего 220 В). Никакой тенденции к отгоранию однофазный ноль не проявляет.
Беда в том, что все электрические коммуникации (т. е. линии электропередачи) являются трёхфазными. Рассмотрим схему «звезда», в которой появляется понятие «нулевой провод».
Вопрос Ток в нейтральном проводе в трехфазных цепях.
⇐ ПредыдущаяСтр 2 из 4Следующая ⇒
Трехфазные цепи с нейтральным проводе называют четерехпроводными цепями.
Обычно сопротивлением проводов не учитывается /
В соответствии с 1 зак. Киргофа ток в нейтр. проводе
Нейтр провод выравнивает фазные напряжения.
Режимы работы трехфазного премника.
Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.
Соединение в звезду
На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.
Линейнымназывается провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной(на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).
Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным(на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной,с нейтральным проводом – четырехпроводной.
Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А, В и С к нейтральной точке N; — фазные напряжения нагрузки.
Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать
Отметим, что всегда — как сумма напряжений по замкнутому контуру.
На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при осно. вании, равными 300), в этом случае
Соединение в треугольник
В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).
Для симметричной системы ЭДС имеем
Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.
Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.
Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями
Аналогично можно выразить линейные токи через фазные токи генератора.
На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов
В заключение отметим, что помимо рассмотренных соединений «звезда — звезда» и «треугольник — треугольник» на практике также применяются схемы «звезда — треугольник» и «треугольник — звезда».