числа близнецы в математике что это
Неизвестный математик совершил прорыв в теории простых чисел-близнецов
В математике чрезвычайно редко случается, чтобы учёный старше 40 лет опубликовал первую серьёзную научную работу. Ещё реже бывает, чтобы эта работа имела большую научную ценность. Именно такой редчайший случай представляет из себя доцент университета Нью-Гэмпшира Итан Чжан (Yitang Zhang), который до сих не имеет ни должности профессора, ни веб-странички со списком научных работ. Тем не менее, ему удалось совершить серьёзный шаг к решению одной из старейших математических проблем — гипотезе о простых числах-близнецах.
Когда журнал “Annals of Mathematics” получил 17 апреля 2013 года научную работу Чжана, они восприняли её скептически. Заявка на прорывное исследование от неизвестного учёного? Это слишком банально и часто встречается, чтобы оказаться правдой. На удивление редколлегии, несколько научных экспертов подробно изучили работу Чжана — и нашли доказательство гипотезы о расстоянии между парными простыми числами предельно ясным, чётким и бесспорным.
В результате, журнал одобрил работу для публикации в исключительно короткие сроки — уже через три недели после поступления.
В свои 50+ лет Итан Чжан преподаёт алгебраическую геометрию в университете, но теория чисел была его хобби. Как обычно, математики часто увлекаются простыми числами как одной из самых интересных загадок в этой области науки. Внимание Чжана привлекла теорема простых чисел-близнецов.
Решето Эратосфена — простой алгоритм нахождения всех простых чисел до некоторого целого числа n, путём вычёркивания всех чисел которые делятся на простой делитель: 2, 3, 5, 7 и т.д.
Математики давно обратили внимание, что распределение простых чисел в бесконечном числовом пространстве имеет определённые закономерности. В частности, странным феноменом выступают простые числа-близнецы, которые отличаются друг от друга на 2. Чем больше количество знаков, тем реже встречаются числа-близнецы, но всё равно они продолжают встречаться снова и снова.
В оригинальной версии гипотеза гласит, что существует бесконечное количество простых чисел-близнецов. Это предположение до сих пор никто не доказал и не опроверг. Самыми большими найденными простыми числами-близнецами, известными науке, являются 3756801695685 × 2 666669 – 1 и 3756801695685 × 2 666669 + 1.
Итан Чжан доказал, что существует бесконечно большое количество простых чисел, расстояние между которыми не превышает 70 миллионов. Эти пары будут встречаться всё реже и реже, но не исчезнут никогда, несмотря на действие теоремы о среднем расстоянии между простыми числами в 2,3 × N, где N — количество разрядов.
Другими словами, среднее расстояние между числами будет приближаться к бесконечности, по мере роста количества разрядов, но при этом всегда будут встречаться простые числа, удалённые друг от друга не более чем на 70 млн, что просто удивительно.
«Эта работа изменит правила игры, — говорит Эндрю Грэнвилль (Andrew Granville), теоретик в области теории чисел из Монреальского университета. — Иногда после появления нового доказательства то, что раньше казалось трудно доказать, становится просто небольшим расширением. Теперь нам нужно изучить работу и понять, что к чему». Но по качеству доказательства нет никаких вопросов: «Он проработал каждую деталь, так что никто не поставит его работу под сомнение», — добавил Грэнвилль.
UPD. Сама статья Чжана не опубликована в открытом доступе, но удалось найти выдержки из его выступления в Герварде 13 мая 2013 года (спасибо, EvgeshaS).
Братишка, ты цел?
Математики вплотную подошли к доказательству гипотезы о числах-близнецах
Фотография: Eddy Van 3000 / flickr.com
Ряд простых чисел постепенно становится все более редким. Если взять отрезок фиксированной длинны и перемещать его вперед по числовой оси, он все реже будет «зацеплять» хотя бы одно простое число. На самом деле верно даже более сильное утверждение: для отрезка любой длины можно уехать так далеко, что в какой-то момент в него не попадет ни одного простого числа! То есть щели между простыми числами могут быть сколь угодно большими.
Но иногда соседние числа идут буквально друг за другом. С помощью современного компьютера мы можем найти практически любое количество простых чисел, но этого мало, для того, чтобы понять, как они ведут себя еще дальше, для того, чтобы сделать выводы о поведении их ряда в целом. Именно с распределением простых чисел связано множество интересных гипотез.
Одна из них — гипотеза о простых числах-близнецах: существует бесконечное количество простых чисел, отличающихся друг от друга на 2. Таких пар много в начале ряда: 3 и 5, 5 и 7, 11 и 13, 17 и 19, 29 и 31. Наибольшие известные на сегодняшний день простые близнецы, полученные с помощью компьютерных вычислений, это 3,756,801,695,685×2 666,669 — 1 и 3,756,801,695,685×2 666,669 + 1. Но будут ли простые близнецы встречаться сколь угодно далеко, до сих пор неизвестно.
На самом деле до недавнего времени не было ответа на более простой вопрос: верно ли, что расстояния между соседними простыми числами растут с ростом простых чисел? Используя аналогию с линейкой, верно ли, что для любой линейки, начиная с какого-то момента, она начнет зацеплять не больше одного простого числа за раз? Разумеется, если гипотеза о числах близнецах верна, то ответ на этот вопрос отрицательный.
Ответ (разумеется, отрицательный) на этот более простой вопрос впервые дал малоизвестный математик Итан Чжан из Университета Нью-Гэмпшира. Работа Чжана, опубликованная в мае 2013 года в научном журнале Annals of Mathematics оказалась полнейшей неожиданностью для математического сообщества. Чжану удалось сделать самый существенный прорыв в понимании поведения последовательных простых чисел за последние несколько сотен лет.
Чжан доказал, что существует бесконечное количество пар подряд идущих простых чисел, отстоящих друг от друга на 70 миллионов. 70 000 000 это еще не 2, что требовалось бы для доказательства гипотезы о простых близнецах, но уже и далеко не бесконечность.
70 000 000: Итан Чжан
В основе доказательства Чжана лежит специальный объект — так называемый подтверждающий гребень.
Назовем гребнем упорядоченное множество различных неотрицательных целых чисел
Возьмем простейший пример, гребень вида <0, 1>. В таком гребне k = 2, h1 = 0, h2=1. Число 1 по определению не считается простым, так что гребень интересно примерять к натуральным числам начиная со второй позиции. Тогда его зубцы укажут на 2 и 3 — оба эти числа простые. Но очевидно, что если двигать расческу дальше, то один из ее зубцов будет обязательно указывать на четное число большее 2-х, которое не является простым. Неинтересный случай.
А что, если взять гребень ? Ясно, что оба его зубца будут попадать на простые числа, пока будут находиться те самые пары простых близнецов. Из этих примеров можно сделать два вывода. Во-первых, изучение свойств «гребней» тесно связано с исходной задачей (точнее, они эквивалентны). Во-вторых, среди гребней есть такие, которые, как изначально неинтересны, потому что какой-то из их зубцов обязательно будет указывать на составное число. Можно ли заранее описать класс интересных гребней и дальше изучать именно их? Оказывается, — и это самое удивительное — да.
Давайте предположим, что наш гребень — не подтверждающий. Значит, для какого-то простого числа p остатки от деления hi на p пробегают все значения от 0 до p-1. Продвинем гребень на любую позицию n>p. Его зубья указывают на числа n+h1. n+hk. Пусть остаток от деления n на p равен m. Так как гребень у нас не подтверждающий, среди в наборе зубцов есть один, скажем hk, остаток от деления которого на p равен p-m. Тогда в сдвинутом на n-ю позицию гребне этот зубец укажет на число n+hk, остаток которого при делении на p равен p-m+m = p. Значит, этот зубец указывает на число делящееся на p и строго большее его, это число — составное. Таким образом мы доказали, что хотя бы один зубец не подтверждающего гребня, сдвинутого на любую позицию n>p, приходится на составное число.
Фотография: Naomi Campbell / flickr.com
Простые близнецы
Простые числа-близнецы это пара простых чисел, отличающихся на 2.
Все пары простых-близнецов, кроме (3, 5) имеют вид .
Первые простые числа-близнецы:
На данный момент, наибольшими известными простыми-близнецами являются числа [1].
Предполагается, что таких пар бесконечно много, но это не доказано. По гипотезе Харди-Литтлвуда, количество π2(x) пар простых-близнецов, не превосходящих x, асимптотически приближается к
где C2 — константа простых-близнецов: