булева алгебра что это
Булева алгебра. Часть 1. Немного истории
В школе все мы изучали алгебру, только про булеву алгебру там не говорили. Чем отличается булева алгебра от школьной, история ее появления, задачи и области применения описаны в данной статье.
Схема, позволяющая двумя выключателями лампочку в коридоре включить при входе в коридор и выключить, войдя в комнату известна очень давно (cм. Коридорная схема управления освещением). Она показана на рисунке 1.
Задача №1. Более сложная. Составить схему, позволяющую включать и выключать свет в вашей комнате любым из 3 различных выключателей. Выключатели расположены у входа в комнату, над постелью и у письменного стола.
Задача № 2.
В спортивном комитете, например заводском, собралось 5 судей.
Каждый из них должен голосовать за принятие различных решений. Решение принимается большинством голосов, но только при том дополнительном условии, что за него голосует председатель комитета.
Задача №3. Практически такое маловероятно, но в качестве сложной учебной задачи вполне подойдет.
В большой шестиугольной комнате на каждой стене установлено по одному переключателю. Постройте такую схему, чтобы в любой момент можно было включать или выключать свет в комнате поворотом одного (любого) переключателя.
После того, как вы безрезультатно просидите над задачами три-четыре дня, отложите их временно в сторону. И займитесь алгеброй Буля. Именно алгебра Буля, или, как ее еще называют, булева алгебра, алгебра релейных схем, поможет вам решить составленные задачи.
Что же такое алгебра Буля?
Как ни странно, несмотря на то, что пять лет в школе изучают алгебру, многие ученики, а впоследствии и взрослые, не смогут ответить на вопрос, а что такое алгебра? Алгебра — это наука, которая изучает множества некоторых элементов и действия над ними.
В школьном курсе алгебры такими элементами являются числа. Числа можно обозначать не цифрами, а буквами, с этим все знакомы. На первых уроках алгебры это всегда затрудняет многих учеников. Вспомните, как трудно было вначале привыкнуть вместо цифр складывать буквы, решая ничего не говорящие уравнения.
Наверное, каждый из нас тогда задавал себе вопрос: «Для чего нужно вводить буквы вместо цифр и, нужно ли это вообще?». И только позднее вы убедились, какие преимущества при решении задач дает алгебра в сравнении с арифметикой.
Алгебра применяется во многих точных науках. Это физика, механика, сопромат, электричество. Закон Ома есть не что иное, как алгебраическое уравнение: достаточно вместо букв подставить их числовые значения, чтобы узнать какой ток будет протекать в нагрузке, или какое сопротивление имеет участок цепи.
Так вы познакомились с алгеброй чисел, или с элементарной алгеброй. Основная и почти единственная задача — получить ответ на вопрос: «Чему равняется X? Сколько?»
В старших классах школы изучают начала векторной алгебры. Эта алгебра принципиально отличается от элементарной алгебры. В ней совершено другая природа изучаемого множества и другие правила действий. Решая векторное уравнение, получаем в ответе вектор, который не является обычным числом, отвечающим на вопрос «Сколько?»
Формулы векторной алгебры во многом отличны от формул элементарной алгебры. Например, и в элементарной алгебре и в векторной имеется операция сложения. Но выполняется она совершенно по-разному. Сложение чисел выполняется совсем не так, как сложение векторов.
Существуют и другие алгебры: линейная алгебра, алгебра структур, алгебра колец, алгебра логики, или, что то же самое, алгебра Буля. На школьных уроках вы, наверное, не слышали имени Джорджа Буля — зато всем известно имя одной из его талантливых дочерей Этель Войнич (1864 – 1960). Она написала роман «Овод», где рассказывается о борьбе за свои права итальянских карбонариев.
Джордж Буль родился в Англии 2 ноября 1815 года. Всю свою жизнь он работал учителем математики и физики в школе. Из воспоминаний его учеников известно, какое огромное значение придавал Буль развитию творческих способностей учащихся. При изложении нового материала он стремился к тому, чтобы его ученики сами заново «открывали» некоторые формулы и законы.
Рассказывая ученикам о трудностях, с которыми ученые неизбежно сталкивались в поиске истины, учитель любил повторять одну восточную мудрость: даже персидский трон не может принести человеку столько наслаждений, как самое маленькое научное открытие. Буль никогда не терял надежды, что когда-нибудь и его ученики сделают настоящее открытие.
Диапазон научных интересов Буля был очень широк: в равной степени его интересовали математика и логика — наука о законах и формах мышления. В те времена логика считалась гуманитарной наукой, и многих, кто знал Джорджа Буля, удивляло, как в одном человеке могли уживаться точные методы познания, присущие математике, и чисто описательные методы логики.
Но ученому захотелось сделать науку о законах и формах мышления такой же строгой, как и любая из естественных наук, скажем математика и физика. Для этого Буль стал обозначать буквами не числа, как это делается в обычной алгебре, а высказывания и показал, что такими уравнениями, очень схожими с алгебраическими, можно решать вопросы об истинности и ложности высказываний, сделанных человеком. Так возникла алгебра Буля.
Но еще задолго до Джорджа Буля немецкий математик и философ Готфрид Лейбниц (1646—1716) впервые высказал идею о создании науки, которая обозначит все понятия обычной разговорной речи символами и установит некоторую новую алгебру для соединения этих символов.
После создания такой науки, по мнению Лейбница, ученые и философы перестанут спорить и перекрикивать друг друга, выясняя истину, а возьмут в руки карандаш и спокойно скажут: «Давайте-ка вычислять!»
В наши дни алгебра логики стала важнейшей составной частью математики. Одна из ее задач — это решение всевозможных уравнений, числовые соотношения в которых заменены буквенными. Каждый из вас, наверное, на всю свою жизнь запомнил, как решать уравнения второй и третьей степени с буквенными коэффициентами. Так вот, Буль в своей новой алгебре воспользовался всеми этими формулами и правилами.
Новым в алгебре Буля является то, что элементы множества, которые в ней изучаются, являются не числами, а высказываниями. Если при решении обычных алгебраических уравнений определяется, какому числу равняется неизвестное X, школьная алгебра ищет ответ на вопрос: «Сколько?»
Алгебра логики ищет ответ на вопрос: «Верно ли то или другое высказывание, обозначенное буквой X?»
Смысл и содержание высказывания здесь не играют никакой роли. Каждое высказывание может быть только или истинным, или ложным. Оно не может быть наполовину истинным и наполовину ложным. В качестве примера можно вспомнить метание жребия при помощи монеты.
Там рассматриваются только два состояния монеты — орел или решка. По договоренности сторон орел это ДА, а решка это НЕТ. Никакие другие промежуточные положения в теории вероятностей не учитываются, хотя они и возможны. Подброшенная монета может упасть на ребро, докатиться по полу до ножки стула или стола и так и остаться в вертикальном положении, а то и вообще провалиться в широкую щель в полу. (По аналогии с электрическими схемами две последних ситуации можно рассматривать как неисправность в виде обгоревшего контакта). Но в те далекие времена булева алгебра, увы, широкого распространения не получила.
Вновь «открыл» алгебру Буля Клод Шеннон. В 1938 году, будучи еще студентом Массачусетского технологического института и Америке, молодой Клод доказал, что алгебра Буля полностью подходит для анализа и синтеза релейных и переключательных схем.
С помощью алгебры Буля можно очень просто составить электрическую схему автомата, работающего на реле. Для этого, оказывается, нужно только точно знать, что должен делать автомат, то есть нужно иметь алгоритм его работы. Так была заложена основа теории цифровых машин, действующих по принципу ДА или НЕТ.
Такова вкратце история булевой алгебры. В следующих статьях мы рассмотрим ее основные законы, примеры контактных схем реализующие эти законы. Рассмотрим решение тех задач, которые были приведены в начале статьи.
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Булева алгебра
Содержание
Определение
Булева алгебра как предметная область определяется следующими критериями:
Происхождение
Булева алгебра названа по имени великого английского математика Джорджа Буля (1815—1864), который в 1854 г. опубликовал ставшую впоследствии знаменитой книгу «Исследование законов мышления». В начале гл. 1 он написал: «Назначение настоящего трактата — исследовать основные законы тех операций ума, посредством которых производится рассуждение; выразить их на символическом языке некоторого исчисления и на этой основе установить науку логики и построить ее метод; сделать этот метод основой общего применения математической доктрины вероятностей; и, наконец, собрать из различных элементов истины, выявленных в ходе этих изысканий, некоторые правдоподобные указания относительно природы и строения человеческого ума».
В этой книге Буль изложил большую часть новой алгебры, особенно пригодную для анализа классов и предложений (высказываний).
Другие математики и логики, в том числе Джон Венн и Эрнст Шрёдер, впоследствии значительно усовершенствовали и расширили алгебру Буля.
В 1938 г. Клод Э. Шеннон, в то время студент Массачусетсского технологического института, впоследствии известный математик и инженер Белловских телефонных лабораторий, а в настоящее время профессор Массачусетского технологического института, показал, что булеву алгебру можно прекрасно применять при синтезе переключательных электрических схем. Его статья «Символический анализ релейно-переключательных схем» представляет собой веху в развитии применений булевой алгебры.
Аксиомы
1) Булева переменная всегда равна либо нулю, либо единице
2) Инверсное значение переменной x противоположно ее прямому значению
3) Правила выполнения логического умножения (конъюнкции)
4) Правила выполнения логического сложения (дизъюнкции)
Законы
1) Ассоциативный (сочетательный) закон
Ассоциативность конъюнкции и дизъюнкции выражается следующими формулами:
На практике это означает, что можно опускать те скобки, которые определяют, в каком порядке должна выполняться конъюнкция и дизъюнкция.
2) Коммутативный (переместительный) закон Правила
С помощью законов алгебры логики можно производить равносильные преобразования логических выражений с целью их упрощения. В алгебре логики на основе принятого соглашения установлены следующие правила (приоритеты) для выполнения логических операций:
первыми выполняются операции в скобках, затем в следующем порядке:
Обозначение на логических схемах
Для обозначения логических элементов используется несколько стандартов. Наиболее распространёнными являются американский (ANSI), европейский (DIN), международный (IEC) и российский (ГОСТ). На рисунке ниже приведены обозначения логических элементов в этих стандартах.
БУЛЕВА АЛГЕБРА
Смотреть что такое «БУЛЕВА АЛГЕБРА» в других словарях:
БУЛЕВА АЛГЕБРА — БУЛЕВА АЛГЕБРА см. Алгебра логики. Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001 … Философская энциклопедия
Булева алгебра — раздел математической логики, изучающий высказывания и операции над ними. Наиболее известными операциями булевой алгебры являются: конъюнкция, дизъюнкция, импликация, эквивалентность, отрицание. По английски: Boolean algebra См. также: Логические … Финансовый словарь
БУЛЕВА АЛГЕБРА — Boolean algebra От Дж.Буль английский математик 1815 1864 Раздел математической логики, изучающий высказывания и операции над ними. Наиболее известными операциями булевой алгебры являются: конъюнкция, дизъюнкция, импликация, эквивалентность,… … Словарь бизнес-терминов
Булева алгебра — Эта статья об алгебраической системе. О разделе математической логики, изучающем высказывания и операции над ними, см. Алгебра логики. Булевой алгеброй[1][2][3] называется непустое множество A с двумя бинарными операциями (аналог конъюнкции),… … Википедия
булева алгебра — Boolean algebra statusas T sritis automatika atitikmenys: angl. Boolean algebra vok. Boolesche Algebra, f rus. булева алгебра, f pranc. algèbre de Boole, f ryšiai: sinonimas – Bulio algebra … Automatikos terminų žodynas
БУЛЕВА АЛГЕБРА — булева решетк а, частично упорядоченное множество специального вида. Б. а. наз. дистрибутивная решетка (дистрибутивная структура), имеющая наибольший элемент 1 единицу Б. а., наименьший элемент 0 нуль Б. а. и содержащая вместе с каждым своим… … Математическая энциклопедия
Булева алгебра — алгебра, в которой каждая переменная может принимать одно из двух значений: «истина» или «ложь». Операции над переменными в булевой алгебре называются логическими операциями. Правила выполнения логических операций удобны для преобразования… … Начала современного естествознания
БУЛЕВА АЛГЕБРА — Названная по имени ее создателя, английского математика Джорджа Буля, система операций с символами, которая использует алгебраические процедуры, но независимо от определенных математических интерпретаций. Булева логика, или калькуляция (как она… … Толковый словарь по психологии
Булева алгебра — (араб.) – система алгебраических операций с символами, названная в честь Д. Буля, одного из её создателей. Также называется калькуляцией (лат. calсulatio – счёт, подсчёт). Интересно, что Д. Буль рассматривал свою работу как представление основных … Энциклопедический словарь по психологии и педагогике
Булева алгебра
Что такое булева алгебра?
Булева алгебра – это раздел математики, который занимается операциями с логическими значениями и включает двоичные переменные. Булева алгебра берет свое начало в книге математика Джорджа Буля 1854 года.
Отличительной чертой булевой алгебры является то, что она занимается только изучением двоичных переменных. Чаще всего логические переменные представлены с возможными значениями 1 («истина») или 0 («ложь»). Переменные также могут иметь более сложные интерпретации, например, в теории множеств. Булева алгебра также известна как бинарная алгебра.
Ключевые выводы
Понимание булевой алгебры
Булева алгебра отличается от элементарной алгебры, поскольку последняя имеет дело с числовыми операциями, а первая имеет дело с логическими операциями. Элементарная алгебра выражается с помощью основных математических функций, таких как сложение, вычитание, умножение и деление, тогда как булева алгебра имеет дело с конъюнкцией, дизъюнкцией и отрицанием.
Понятие булевой алгебры было впервые введено Джорджем Булем в его книге «Математический анализ логики» и далее расширено в его книге «Исследование законов мысли». Поскольку ее концепция была подробно описана, булевская алгебра в основном использовалась в языках программирования. Его математические цели используются в теории множеств и статистике.
Булева алгебра в финансах
Булева алгебра находит применение в финансах посредством математического моделирования рыночной деятельности. Например, исследованию цен на опционы на акции может помочь использование бинарного дерева для представления диапазона возможных результатов для базовой ценной бумаги. В этой биномиальной модели ценообразования опционов, где есть только два возможных результата, логическая переменная представляет увеличение или уменьшение цены ценной бумаги.
Этот тип моделирования необходим, потому что для американских опционов, которые могут быть исполнены в любое время, траектория цены ценной бумаги так же важна, как и ее окончательная цена. Модель ценообразования биномиальных опционов требует, чтобы траектория цены ценной бумаги была разбита на серию дискретных временных диапазонов.
Таким образом, модель ценообразования биномиальных опционов позволяет инвестору или трейдеру отслеживать изменение цены актива от одного периода к другому. Это позволяет им оценивать вариант на основе решений, принятых на разных этапах. Поскольку опцион в США может быть исполнен в любое время, это позволяет трейдеру определить, следует ли ему исполнять опцион или удерживать его в течение более длительного периода. Анализ биномиального дерева позволит трейдеру заранее увидеть, следует ли исполнять опцион. Если есть положительное значение, то опцион должен быть исполнен, если значение отрицательное, то трейдер должен удерживать позицию.
Булева алгебра. Часть 2. Основные законы и функции
Продолжение рассказа о булевой алгебре, условные обозначения, правила, операции. Переход к основам контактных схем.
В первой статье было рассказано о Джордже Буле как о создателе алгебры логики. Во второй статье будет рассказано об основных операциях булевой алгебры, методах упрощения булевых выражений. Итак, булева алгебра в качестве аргументов использует высказывания, причем не их смысл, а истинность или ложность высказывания.
Форма записи выражений в булевой алгебре.
Если высказывание истинно, то его записывают так: А = 1, если же оно ложно, то А = 0 (ведь неверно, что картошка — это фрукт). Для любого высказывания А либо истинно (А = 1), либо ложно (А = 0). Середины здесь быть не может. Об этом мы уже говорили.
Если два простых высказывания соединить союзом И, то получится сложное высказывание, которое называют логическим произведением. Возьмем два простых высказывания: «Три больше двух» обозначим буквой А, «Три меньше пяти» — буквой В.
Отсюда сложное высказывание «Три больше двух И меньше пяти» есть логическое (в данном случае заглавная буква И, говорит о том, что это «И» логическая операция, также как далее в тексте «ИЛИ» и «НЕ».) произведение высказываний А и В. Обозначается оно так: A^B или А*В.
Логическое умножение (операция «И»).
В элементарной алгебре А*А =А2. Но в алгебре Буля А*А = А2 = А, А * А = А так как знак умножения (*) теперь обозначает. И. в смысле И. И. Весь наш опыт подтверждает, что и А И А — это то же самое, что одно А. С этим нельзя не согласиться. Истинность высказывания не меняется, если его повторить сомножителем несколько раз.
Произведение двух высказываний считается истинным (равным 1), тогда, и только тогда, когда оба сомножителя истинны, и ложным (равным 0), если хоть один из сомножителей ложен. Согласитесь, что эти правила не противоречат здравому смыслу, и, кроме того, они полностью соответствуют правилам элементарной алгебры:
1*1 = 1, 1*0 = 0 = 0*1 = 0, 0*0 = 0.
Первое равенство читается так: если и А и В истинны, то произведение А*В истинно. В алгебре Буля знак умножения (*) заменяет союз И.
Логические произведения могут включать не два, а большее число высказываний — сомножителей. И в этом случае произведение бывает истинным только тогда, когда одновременно истинны все высказывания-сомножители.
Логическое сложение (операция «ИЛИ»)
Если два высказывания соединить союзом ИЛИ. то образованное сложное высказывание называется логической суммой.
Рассмотрим пример логической суммы. Высказывание А: «Сегодня я пойду в кино».
Высказывание В: «Сегодня я пойду на дискотеку». Складываем оба высказывания и получаем: «Сегодня я пойду в кино ИЛИ на дискотеку».
Это сложное высказывание обозначается так: А + В = С или (А V В) = С.
Через С мы обозначили сложное высказывание логической суммы.
В рассматриваемом примере союз ИЛИ нельзя употреблять в исключающем смысле. Ведь в один и тот же день можно попасть И в кино И на дискотеку. А вот высказывание:
Знак V для обозначения логической суммы выбран потому, что это начальная буква латинского слова «vel», обозначающего «или», в отличие от латинского слова «aut>, обозначающего «и». Теперь всем должно быть ясно, почему логическое произведение обозначается знаком ^.
В элементарной алгебре есть правило A + А = 2А. Это правило верно, какое бы число ни изображалось буквой А. В булевой алгебре ему соответствует правило А + А = А. Весь наш жизненный опыт говорит, что сказать А ИЛИ А ИЛИ оба А есть лишь другой и более длинный способ сказать просто А.
Как и всякое сложное высказывание, сумма двух высказываний А и В может быть истинной или ложной. Сумма считается истинной, то есть равной единице, если хоть одно из слагаемых истинно:
А + В = 1, если ИЛИ А = 1 ИЛИ В = 1, что согласуется с обычной арифметикой:
Если оба складываемых высказывания истинны, то сумма считается также истинной, поэтому в алгебре Буля имеем: (1) + (1) = 1.
Скобки здесь поставлены для того, чтобы подчеркнуть условный, смысл этого сложения, а не арифметический.
Сумма двух высказываний считается ложной и равной нулю тогда, а только тогда, когда оба слагаемых ложны. Отсюда:
Итак, сумма двух высказываний А + В считается истинной, если истинно ИЛИ А, ИЛИ В, ИЛИ оба слагаемых вместе. Таким образом, слово ИЛИ обозначается знаком +.
Помня, что высказывания А и В могут быть только истинными или ложными и, следовательно, иметь меру истинности 1 или 0, результаты рассмотренных операций И и ИЛИ можно свести в таблицы 1 и 2.
Третья операция, широко используемая алгеброй Буля, — операция отрицания — НЕ. Напоминаем, элементарная алгебра пользуется операциями СЛОЖИТЬ, ВЫЧЕСТЬ, УМНОЖИТЬ НА, РАЗДЕЛИТЬ НА и некоторыми другими.
Для каждого высказывания А существует его отрицание НЕ А, которое мы будем обозначать символом /А. Это ни у кого не должно вызывать сомнения.
Приведем примеры: «Мы поедем в лес» А, «Мы не поедем в лес» /А.
Если высказывание А истинно, то есть А = 1, то его отрицание /А обязательно должно быть ложно /А = 0. И наоборот, если какое-либо высказывание ложно, то его отрицание истинно. Например: «Лошадь не ест сена» /А = 0, «Лошадь ест сено» (А = 1). Это можно выразить таблицей 3.
Определяя смысл действия отрицания, и полагая, что из двух высказываний А и /А всегда одно истинно, следуют две новые формулы алгебры Буля:
Имеются еще и другие формулы, упрощающие логическую обработку высказываний. Например, 1+А = 1, так как, согласно определению сложения, в случае, когда одно слагаемое равно единице, сумма всегда равна единице. Полученный результат не зависит от того, будет ли А = 0 или А = 1.
Каждая из трех рассмотренных нами логических операций (И, ИЛИ, НЕ) обладает определенными свойствами, близкими к правилам элементарной алгебры. Если все их сформулировать, то получим 25 правил булевой алгебры. Их вполне достаточно для решения почти любой логической задачи. Без этих правил решать логические задачи из-за их кажущейся запутанности становится довольно трудно. Пытаться найти правильный ответ, не пользуясь правилами, — значит заменять их смекалкой и общими рассуждениями. Правила значительно облегчают эту работу и экономят время.
В рамках статьи невозможно рассмотреть все эти 25 правил, но желающие всегда могут найти их в соответствующей литературе.
Как уже упоминалось в первой статье в 1938 году молодой американский ученый Клод Шеннон в статье «Символический анализ релейных и переключательных схем» впервые использует булеву алгебру для задач релейной техники. Открытие Шеннона состояло в том, что он понял, что метод конструирования релейных автоматов и электронных вычислительных машин представляет собой фактически раздел математической логики.
Так часто бывает. Ученый долгие годы трудится над какой-либо проблемой, которая его соотечественникам кажется совершенно ненужной — просто забавой. Но проходят десятилетия, а иногда и века, и никому не нужная теория не только приобретает право на существование, но без нее уже становится немыслим дальнейший прогресс.
Что помогло Шеннону вторично «открыть» булеву алгебру? Случай? Ничего подобного.
Любовь к релейным автоматам, построенным на обычных выключателях и реле, помогли молодому ученому связать забытую теорию с задачами автоматических телефонных станций, над которыми он работал в то время. В дальнейшем ту же идею «да или нет» Шеннон ввел в рассмотрение дискретных сообщений и заложил основу целого раздела кибернетики—теории информации.
Алгебра Буля очень подошла для анализа и синтеза релейных схем. Достаточно было в качестве истинного высказывания принять: «Сигнал в цепи есть», а в качестве ложного — «Сигнала в цепи нет», как появилась новая алгебра — алгебра сигналов, алгебра релейных схем.
Новая алгебра справедлива только для рассмотрения релейных и переключательных цепей. Ведь только в таких схемах удовлетворяется условие «сигнал есть» и «сигнала нет». Там, где сигнал меняется непрерывно, приобретая сколь угодно большое число промежуточных условий (такой сигнал называется аналоговым), релейная алгебра неприменима. Об этом нужно всегда помнить. Но как раз большинство электронных вычислительных машин и кибернетических автоматов используют дискретный принцип обработки сигналов, в основу которого положены элементы «да — нет».
Выражение «Контакт замкнут» Шеннон принял за истинное (1), а «Контакт разомкнут» — за ложное (0). Всю остальную «алгебру», включая операции И, ИЛИ и НЕ и 25 правил Шеннон заимствовал у Буля.
Алгебра релейных схем получилась проще алгебры Буля, так как она имеет дело только с элементами типа «да — нет». Кроме того, новая алгебра более наглядна.
Элементами в этой алгебре являются контакты, которые мы будем обозначать буквами А, В, С. Контакт замкнут— А, контакт разомкнут — /А (буква с черточкой).
Система обозначений, как видите, полностью взята из алгебры Буля. Разомкнутый контакт является отрицанием замкнутого контакта. Один и тот же контакт не может быть одновременно замкнутым и разомкнутым.
Условимся, что если в какой-либо схеме два контакта обозначены одной и той же буквой, то это значит, что они всегда принимают одни и те же значения.
В каждый данный момент они или оба одновременно разомкнуты, или оба замкнуты. Проще всего их представить механически соединенными вместе так, что оба они одновременно размыкаются или замыкаются.
Если в некоторой цепи какой-либо контакт есть отрицание другого контакта, то их значения всегда противоположны. Например, контакты С и /С никогда не могут быть одновременно разомкнуты или одновременно замкнуты. А на схеме их можно представлять механически соединенными: если один из них размыкается, то другой замыкается.
Знакомство с релейной алгеброй начнем с разбора простейших схем, соответствующих операциям И, ИЛИ и НЕ.
Произведением двух контактов (операция И) будем называть схему, полученную в результате их последовательного соединения: она замкнута (равна 1) только тогда, когда оба контакта замкнуты (равны 1).
Суммой двух контактов (операция ИЛИ) будем называть схему, образованную при их параллельном соединении: она замкнута (равна 1) тогда, когда замкнут (равен 1) хотя бы один из образующих схему контактов.
Противоположный данному контакту (операция НЕ) — это контакт, равный 0 (разомкнутый), если данный контакт равен 1 (замкнут), и наоборот.
Как и в алгебре Буля, если контакты обозначены буквами А и В, то произведение двух контактов мы будем обозначать через А*В, сумму — через А + В, а контакт, противоположный А, — через /А. Сказанное поясним рисунками 1, 2 и 3.
Достоверность таблиц, соответствующих операциям И, ИЛИ и НЕ. теперь ни у кого не должна вызывать сомнений.
Остановимся на двух примерах: 1*0 = 0 и 1+0=1.
Из рисунка видно, что постоянно замкнутый контакт, последовательно соединенный с постоянно разомкнутым контактом, эквивалентен постоянно разомкнутому контакту (1*0 = 0) Постоянно замкнутый контакт, параллельно соединенный с постоянно разомкнутым контактом, эквивалентен постоянно замкнутому контакту.
Познакомившись с арифметикой контактных схем, можете любую релейную схему описать формулой, используя для этого принятые условные обозначения. В кибернетике такие формулы называются структурными.
Если структурная формула какой-либо релейной схемы равна 1, то через нее сможет пройти сигнал — цепь замкнута. И наоборот, если структурная формула схемы равна 0, сигнал через нее не пройдет — цепь разорвана. Вывод: две релейные схемы эквивалентны друг другу тогда, когда равны их структурные формулы.
В продолжении статьи мы с вами рассмотрим примеры контактных схем, типовые контактные схемы и их эквиваленты, в также составление схем по структурным формулам. Также рассмотрим основные логические микросхемы, выполняющие функции булевой алгебры.