бтиз транзисторы что это
IGBT транзистор
Биполярный транзистор с изолированным затвором
В современной силовой электронике широкое распространение получили так называемые транзисторы IGBT. Данная аббревиатура заимствована из зарубежной терминологии и расшифровывается как Insulated Gate Bipolar Transistor, а на русский манер звучит как Биполярный Транзистор с Изолированным Затвором. Поэтому IGBT транзисторы ещё называют БТИЗ.
БТИЗ представляет собой электронный силовой прибор, который используется в качестве мощного электронного ключа, устанавливаемого в импульсные источники питания, инверторы, а также системы управления электроприводами.
Суть его работы заключается в том, что полевой транзистор управляет мощным биполярным. В результате переключение мощной нагрузки становиться возможным при малой мощности, так как управляющий сигнал поступает на затвор полевого транзистора.
Вот так выглядят современные IGBT FGH40N60SFD фирмы Fairchild. Их можно обнаружить в сварочных инверторах марки «Ресанта» и других аналогичных аппаратах.
Внутренняя структура БТИЗ – это каскадное подключение двух электронных входных ключей, которые управляют оконечным плюсом. Далее на рисунке показана упрощённая эквивалентная схема биполярного транзистора с изолированным затвором.
Упрощённая эквивалентная схема БТИЗ
История появления БТИЗ.
Впервые мощные полевые транзисторы появились в 1973 году, а уже в 1979 году была предложена схема составного транзистора, оснащенного управляемым биполярным транзистором при помощи полевого с изолированным затвором. В ходе тестов было установлено, что при использовании биполярного транзистора в качестве ключа на основном транзисторе насыщение отсутствует, а это значительно снижает задержку в случае выключения ключа.
Несколько позже, в 1985 году был представлен БТИЗ, отличительной особенностью которого была плоская структура, диапазон рабочих напряжений стал больше. Так, при высоких напряжениях и больших токах потери в открытом состоянии очень малы. При этом устройство имеет похожие характеристики переключения и проводимости, как у биполярного транзистора, а управление осуществляется за счет напряжения.
Первое поколение устройств имело некоторые недостатки: переключение происходило медленно, да и надежностью они не отличались. Второе поколение увидело свет в 90-х годах, а третье поколение выпускается по настоящее время: в них устранены подобнее недостатки, они имеют высокое сопротивление на входе, управляемая мощность отличается низким уровнем, а во включенном состоянии остаточное напряжение также имеет низкие показатели.
Уже сейчас в магазинах электронных компонентов доступны IGBT транзисторы, которые могут коммутировать токи в диапазоне от нескольких десятков до сотен ампер (Iкэ max), а рабочее напряжение (Uкэ max) может варьироваться от нескольких сотен до тысячи и более вольт.
Условное обозначение БТИЗ (IGBT) на принципиальных схемах.
Условное обозначение БТИЗ (IGBT)
На рисунке показано условное графическое обозначение биполярного транзистора с изолированным затвором. Также он может изображаться со встроенным быстродействующим диодом.
Особенности и сферы применения БТИЗ.
Отличительные качества IGBT:
Управляется напряжением (как любой полевой транзистор);
Имеют низкие потери в открытом состоянии;
Могут работать при температуре более 100°C;
Способны работать с напряжением более 1000 Вольт и мощностями свыше 5 киловатт.
Перечисленные качества позволили применять IGBT транзисторы в инверторах, частотно-регулируемых приводах и в импульсных регуляторах тока. Кроме того, они часто применяются в источниках сварочного тока (подробнее об устройстве сварочного инвертора), в системах управления мощными электроприводами, которые устанавливаются, например, на электротранспорт: электровозы, трамваи, троллейбусы. Такое решение значительно увеличивает КПД и обеспечивает высокую плавность хода.
Кроме того, устанавливают данные устройства в источниках бесперебойного питания и в сетях с высоким напряжением. Их можно обнаружить в составе электронных схем стиральных, швейных и посудомоечных машин, инверторных кондиционеров, насосов, системах электронного зажигания автомобилей, системах электропитания серверного и телекоммуникационного оборудования. Как видим, сфера применения БТИЗ довольно велика.
IGBT-модули.
IGBT-транзисторы выпускаются не только в виде отдельных компонентов, но и в виде сборок и модулей. На фото показан мощный IGBT-модуль BSM 50GB 120DN2 из частотного преобразователя (так называемого «частотника») для управления трёхфазным двигателем.
IGBT модуль
Схемотехника частотника такова, что технологичнее применять сборку или модуль, в котором установлено несколько IGBT-транзисторов. Так, например, в данном модуле два IGBT-транзистора (полумост).
Стоит отметить, что IGBT и MOSFET в некоторых случаях являются взаимозаменяемыми, но для высокочастотных низковольтных каскадов предпочтение отдают транзисторам MOSFET, а для мощных высоковольтных – IGBT.
Так, например, IGBT транзисторы прекрасно выполняют свои функции при рабочих частотах до 20-50 килогерц. При более высоких частотах у данного типа транзисторов увеличиваются потери. Также наиболее полно возможности IGBT транзисторов проявляются при рабочем напряжении более 300-400 вольт. Поэтому биполярные транзисторы с изолированным затвором легче всего обнаружить в высоковольтных и мощных электроприборах, промышленном оборудовании.
Силовые MOSFET и IGBT транзисторы, отличия и особенности их применения
Технологии в области силовой электроники все время совершенствуются: реле становятся твердотельными, биполярные транзисторы и тиристоры заменяются все обширнее на полевые транзисторы, новые материалы разрабатываются и применяются в конденсаторах и т. д. — всюду определенно заметна активная технологическая эволюция, которая не прекращается ни на год. С чем же это связано?
Это связано, очевидно, с тем, что в какой-то момент производители оказываются не в состоянии удовлетворить запросы потребителей на возможности и качество силового электронного оборудования: у реле искрят и обгорают контакты, биполярные транзисторы для управления требуют слишком много мощности, силовые блоки занимают неприемлемо много места и т. п. Производители конкурируют между собой — кто первым предложит лучшую альтернативу…?
Так и появились полевые MOSFET транзисторы, благодаря которым управление потоком носителей заряда стало возможным не посредством изменения тока базы, как у биполярных предков, а посредством электрического поля затвора, по сути — просто приложенным к затвору напряжением.
В итоге уже к началу 2000-х доля силовых устройств на MOSFET и IGBT составляла около 30%, в то время как биполярных транзисторов в силовой электронике осталось менее 20%. За последние лет 15 произошел еще более существенный рывок, и биполярные транзисторы в классическом понимании почти полностью уступили место MOSFET и IGBT в сегменте управляемых силовых полупроводниковых ключей.
Проектируя, к примеру, силовой высокочастотный преобразователь, разработчик уже выбирает между MOSFET и IGBT – оба из которых управляются напряжением, прикладываемым к затвору, а вовсе не током, как биполярные транзисторы, и цепи управления получаются в результате более простыми. Давайте, однако рассмотрим особенности этих самых транзисторов, управляемых напряжением затвора.
MOSFET или IGBT
У IGBT (БТИЗ-биполярный транзистор с изолированным затвором) в открытом состоянии рабочий ток проходит через p-n-переход, а у MOSFET – через канал сток-исток, обладающий резистивным характером. Вот и возможности для рассеяния мощности у этих приборов различаются, потери получаются разными: у MOSFET-полевика рассеиваемая мощность будет пропорциональна квадрату тока через канал и сопротивлению канала, в то время как у БТИЗ рассеиваемая мощность окажется пропорциональна напряжению насыщения коллектор-эмиттер и току через канал в первой степени.
Если нам нужно снизить потери на ключе, то потребуется выбрать MOSFET с меньшим сопротивлением канала, однако не стоит забывать, что с ростом температуры полупроводника это сопротивление вырастет и потери на нагрев все же возрастут. А вот у IGBT с ростом температуры напряжение насыщения p-n-перехода наоборот снижается, значит и потери на нагрев уменьшаются.
Но не все так элементарно, как может показаться на взгляд неискушенного в силовой электронике человека. Механизмы определения потерь у IGBT и MOSFET в корне различаются.
Как вы поняли, у MOSFET-транзистора сопротивление канала в проводящем состоянии обуславливает определенные потери мощности на нем, которые по статистике почти в 4 раза превосходят мощность, затрачиваемую на управление затвором.
У IGBT дело обстоит с точностью до наоборот: потери на переходе меньше, а вот затраты энергии на управление — больше. Речь о частотах порядка 60 кГц, и чем выше частота — тем больше потери на управление затвором, особенно применительно к IGBT.
Дело все в том, что в MOSFET неосновные носители заряда не рекомбинируют, как это происходит в IGBT, в составе которого есть полевой MOSFET-транзистор, определяющий скорость открывания, но где база недоступна напрямую, и ускорить процесс при помощи внешних схем нельзя. В итоге динамические характеристики у IGBT ограничены, ограничена и предельная рабочая частота.
Повышая коэффициент передачи и снижая напряжение насыщения — допустим, понизим статические потери, но зато повысим потери при переключении. По этой причине производители IGBT-транзисторов указывают в документации на свои приборы оптимальную частоту и максимальную скорость переключения.
Есть недостаток и у MOSFET. Его внутренний диод отличается конечным временем обратного восстановления, которое так или иначе превышает время восстановления, характерное для внутренних антипараллельных диодов IGBT. В итоге имеем потери включения и токовые перегрузки у MOSFET в полумостовых схемах.
Теперь непосредственно про рассеиваемое тепло. Площадь полупроводниковой IGBT-структуры больше чем у MOSFET, поэтому и рассеиваемая мощность у IGBT больше, вместе с тем температура перехода в процессе работы ключа растет интенсивнее, поэтому важно правильно подобрать радиатор к ключу, грамотно рассчитав поток тепла, приняв в расчет тепловые сопротивления всех границ сборки.
У MOSFET на высоких мощностях также растут потери на нагрев, сильно превосходя потери на управление затвором IGBT. При мощностях выше 300-500Вт и на частотах в районе 20-30 кГц преимущество будет за IGBT-транзисторами.
Между тем нельзя однозначно сказать, что в одной типовой ситуации подойдет именно IGBT, а в другой — только MOSFET. Необходимо комплексно подходить к разработке каждого конкретного устройства. Исходя из мощности прибора, режима его работы, предполагаемого теплового режима, приемлемых габаритов, особенностей управления схемой и т.д.
И главное — выбрав ключи нужного типа, разработчику важно точно определить их параметры, ибо в технической документации (в даташите) отнюдь не всегда все точно соответствует реальности. Чем более точно будут известны параметры — тем эффективнее и надежнее получится изделие, независимо от того, идет ли речь об IGBT или о MOSFET.
Бтиз транзисторы что это
Москатов Е. А. Книга «Электронная техника. Начало»
6. Биполярные транзисторы с изолированными затворами
6.1. Общие сведения о БТИЗ
Биполярный транзистор с изолированным затвором (БТИЗ) – по-английски «insulated gate bipolar transistor» или сокращённо IGBT – это компонент, управление которым, как полевым транзистором, осуществляют напряжением, а протекание тока по силовым выводам коллектора и эмиттера обусловлено, как у биполярного транзистора, движением носителей зарядов обоих типов. В едином технологическом цикле в полупроводнике организуют структуры мощного биполярного p-n-p транзистора, которым управляет МОП-транзистор малой мощности, имеющий n-канал. Выводы БТИЗ носят названия затвора, коллектора и эмиттера.
Достоинства: возможность коммутации токов в тысячи ампер и допустимость прикладывания постоянного напряжения коллектор-эмиттер в несколько киловольт к запертому транзистору. Если напряжение коллектор-эмиттер запертого БТИЗ превышает приблизительно 600В, то падающее на выводах коллектор-эмиттер открытого БТИЗ напряжение насыщения обычно меньше по сравнению с полевыми транзисторами той же ценовой группы.
Недостатки: даже наименее инерционные БТИЗ предназначены для функционирования на много более низкой частоте, нежели полевые транзисторы, причём чем выше частота, тем ниже максимально допустимая амплитуда тока коллектора транзистора. При этом БТИЗ по частотным свойствам подразделяют на группы. При изготовлении БТИЗ помимо необходимого биполярного p-n-p транзистора возникает ещё и паразитный биполярный n-p-n транзистор, и они совместно образуют структуру тиристора. Это отражено на эквивалентной схеме БТИЗ, изображённой на рис. 6.1, где компонент VT2 – это паразитный транзистор.
При высокой скорости переключения компонента или при протекании по выводам коллектор-эмиттер короткого импульса тока большой амплитуды и прочего структура тиристора в БТИЗ может самопроизвольно перейти в открытое состояние. При этом БТИЗ теряет управляемость, и транзистор, как и устройство, в котором он работал, могут выйти из строя.
Прикладывая отпирающее напряжение к выводам затвор-эмиттер, БТИЗ из отсечки переводят в состояние насыщения, сопротивление коллектор-эмиттер падает, и по этим выводам течёт ток нагрузки. Если напряжение затвор-эмиттер отсутствует, то транзистор имеет состояние отсечки, в котором ток через выводы коллектор-эмиттер практически отсутствует. Таким образом, БТИЗ – это полностью управляемые компоненты. Современные силовые модули БТИЗ выдерживают прямой ток коллектора силой до 1,8 кА, напряжение коллектор-эмиттер в закрытом состоянии до 4,5 кВ. БТИЗ обычно используют в качестве электронных ключей в импульсных преобразователях, например, инверторных сварочных аппаратов, в системах управления электродвигателями и т.д.
6.2. Конструкция и принцип действия БТИЗ
Простейшая структура БТИЗ планарного исполнения отражена на рис. 6.2.
6.3. Основные параметры БТИЗ
К наиболее важным параметрам IGBT относят следующее:
Длительность включения и выключения транзистора, мкс.
Ёмкости затвор-эмиттер, коллектор-эмиттер и затвор-коллектор при заданном напряжении коллектор-эмиттер, нФ.
Заряд затвора транзистора, нКл.
Максимально допустимую температуру нагрева кристалла транзистора, °C.
Максимальную мощность рассеяния, Вт.
Напряжение насыщения, т.е. напряжение между выводами коллектор-эмиттер открытого транзистора, В.
Предельно допустимый импульсный ток коллектора при температуре 25 °C, А.
Предельно допустимый постоянный ток коллектора при температуре 25 °C, А.
Предельную скорость нарастания напряжения, не приводящую к самопроизвольному открыванию транзистора, dU / dt.
Тепловое сопротивление переход-корпус, °C / Вт.
Энергии включения, выключения и переключения, мДж.
IGBT-транзистор (сокращение от англоязычного Insulated-gate bipolar transistor) или биполярный транзистор с изолированным затвором (сокращенно БТИЗ) — представляет собой полупроводниковый прибор с тремя выводами, сочетающий внутри одного корпуса силовой биполярный транзистор и управляющий им полевой транзистор.
IGBT-транзисторы являются на сегодняшний день основными компонентами силовой электроники (мощные инверторы, импульсные блоки питания, частотные преобразователи и т.д.), где они выполняют функцию мощных электронных ключей, коммутирующих токи на частотах измеряемых десятками и сотнями килогерц. Транзисторы данного типа выпускаются как в виде отдельных компонентов, так и в виде специализированных силовых модулей (сборок) для управления трехфазными цепями.
То что IGBT-транзистор включает в себя транзисторы сразу двух типов (включенных по каскадной схеме), позволяет объединить достоинства двух технологий внутри одного полупроводникового прибора.
Биполярный транзистор в качестве силового позволяет получить большее рабочее напряжение, при этом сопротивление канала в открытом состоянии оказывается пропорционально току в первой степени, а не квадрату тока как у обычных полевых транзисторов. А то что в качестве управляющего транзистора используется именно полевой транзистор — сводит затраты мощности на управление ключом к минимуму.
Названия электродов характеризуют структуру IGBT-транзистора: управляющий электрод именуется затвором (как у полевого транзистора), а электроды силового канала — коллектором и эмиттером (как у транзистора биполярного).
Немного истории
Исторически биполярные транзисторы использовались наравне с тиристорами в качестве силовых электронных ключей до 90-х годов. Но недостатки биполярных транзисторов были всегда очевидны: большой ток базы, медленное запирание и от этого перегрев кристалла, сильная зависимость основных параметров от температуры, ограниченное напряжение насыщения коллектор-эмиттер.
Появившиеся позже полевые транзисторы (структуры МОП) сразу изменили ситуацию в лучшую сторону: управление напряжением уже не требует столь больших токов, параметры ключа слабо зависят от температуры, рабочее напряжение транзистора не ограничено снизу, низкое сопротивление силового канала в открытом состоянии расширяет диапазон рабочих токов, частота переключения легко может достигать сотен килогерц, кроме того примечательна способность полевых транзисторов выдерживать сильные динамические нагрузки при высоких рабочих напряжениях.
Первый силовой полевой транзистор был разработан Виктором Бачуриным еще в Советском Союзе, в 1973 году, после чего он был исследован под руководством ученого Владимира Дьяконова. Исследования группы Дьяконова относительно ключевых свойств силового полевого транзистора привели к разработке в 1977 году составного транзисторного ключа, внутри которого биполярный транзистор управлялся посредством полевого с изолированным затвором.
На полупроводниковый прибор нового типа советскими учеными было получено авторское свидетельство №757051 «Побистор». Это была первая структура, содержащая в одном корпусе мощный биполярный транзистор, поверх которого находился управляющий полевой транзистор с изолированным затвором.
Первые версии биполярных транзисторов с изолированным затвором имели один серьезный недостаток — медленное переключение. Название IGBT было принято в 90-е, когда были созданы уже второе и третье поколение IGBT-транзисторов. Тогда уже этих недостатков не стало.
Отличительные преимущества IGBT-транзисторов
По сравнению с обычными полевыми транзисторами, IGBT-транзисторы обладают более высоким входным сопротивлением и более низким уровнем мощности, которая тратится на управление затвором.
В отличие от биполярных транзисторов — здесь более низкое остаточное напряжение во включенном состоянии. Потери в открытом состоянии, даже при больших рабочих напряжениях и токах, достаточно малы. При этом проводимость как у биполярного транзистора, а управляется ключ напряжением.
Диапазон рабочих напряжений коллектор-эмиттер у большинства широко доступных моделей варьируется от десятков вольт до 1200 и более вольт, при этом токи могут доходить до 1000 и более ампер. Есть сборки на сотни и тысячи вольт по напряжению и на токи в сотни ампер.
Считается, что для рабочих напряжений до 500 вольт лучше подходят полевые транзисторы, а для напряжений более 500 вольт и токов больше 10 ампер — IGBT-транзисторы, так как на более низких напряжениях крайне важно меньшее сопротивление канала в открытом состоянии.
Применение IGBT-транзисторов
Главное применение IGBT-транзисторы находят в инверторах, импульсных преобразователях напряжения и частотных преобразователях (пример — полумостовой модуль SKM 300GB063D, 400А, 600В) — там, где имеют место высокое напряжение и значительные мощности.
Сварочные инверторы — отдельная важная область применения IGBT-транзисторов: большой ток, мощность более 5 кВт и частоты до 50 кГц (IRG4PC50UD – классика жанра, 27А, 600В, до 40 кГц).
Не обойтись без IGBT и на городском электрcтранспорте: с тиристорами тяговые двигатели показывают более низкий КПД чем с IGBT, к тому же с IGBT достигается более плавный ход и хорошее сочетание с системами рекуперативного торможения даже на высоких скоростях.
Нет ничего лучше чем IGBT, когда требуется коммутировать на высоких напряжениях (более 1000 В) или управлять частотно-регулируемым приводом (частоты до 20 кГц).
На некоторых схемах IGBT и MOSFET транзисторы полностью взаимозаменяемы, так как их цоколевка схожа, а принципы управления идентичны. Затворы в том и в другом случае представляют собой емкость до единиц нанофарад, с перезарядкой у удержанием заряда на которой легко справляется драйвер, устанавливаемый на любой подобной схеме, и обеспечивающий адекватное управление.
Транзисторы IGBT
Полупроводниковый ключ – один из самых важных элементов силовой электроники. На их базе строятся практически все бестрансформаторные преобразователи тока и напряжения, инверторы, частотные преобразователи.
Полупроводниковый ключ – один из самых важных элементов силовой электроники. На их базе строятся практически все бестрансформаторные преобразователи тока и напряжения, инверторы, частотные преобразователи.
Применение электронных ключей позволяет упростить схему преобразователей, значительно уменьшить габариты устройств, улучшить технические характеристики.
Основные характеристики полупроводниковых коммутаторов:
В схемах преобразователей используют двухоперационные тиристоры с управляющими электродами (GTO и IGCT), силовые биполярные (БП) и полевые транзисторы (MOSFET), биполярные транзисторы с изолированным затвором (IGBT).
Первые силовые электронные устройства были выполнены на базе тиристоров и биполярных транзисторов. Первые при всех своих достоинствах не могут обеспечить необходимое быстродействие, управляемые тиристоры используют в среднечастотной области.
Применение биполярных транзисторов существенно ограничивает невысокий коэффициент передачи тока, значительный температурный разброс этого параметра, управление знакопеременным напряжением, невысокая плотность тока силовой цепи.
В схемы с биполярными транзисторами приходится включать дополнительные цепи, обеспечивающие управление и защиту полупроводниковых элементов. Это существенно увеличивает стоимость преобразователей и усложняет их производство.
Основные полупроводниковые элементы силовой электроники сейчас – полевые транзисторы (MOSFET), биполярные транзисторы с изолированным затвором (IGBT).
MOSFET-транзисторы применяются в основном в высокочастотных низковольтных преобразователях, область применения IGBT – мощные высоковольтные схемы.
Конструкция и принцип работы силовых транзисторов
IGBT (Insulated Gate Bipolar Transistor) или биполярный силовой транзистор с изолированным затвором – элемент из двух транзисторов в общей полупроводниковой структуре, устроенный по каскадной схеме. Биполярный транзистор образует силовой канал, полевой – канал управления. Объединение полупроводниковых элементов реализовано структурой элементных ячеек в одном кристалле.
Упрощенная эквивалентная схема биполярных транзисторов с изолированным затвором представлена на рисунке:
IGBT – приборы появились после того, как были выявлены недостатки MOSFET транзисторов в высоковольтных схемах: квадратичная зависимость сопротивления канала от напряжения.
Полупроводниковые приборы IGBT сочетают достоинства силовых биполярных и полевых транзисторов с изолированным затвором:
Сопротивление канала IGBT-элементов растет пропорционально току, зависимость потерь от величины тока не квадратичная, как у транзисторов MOSFET. Быстродействие силовых элементов с изолированным затвором превосходит скорость коммутации биполярных транзисторов, но уступает элементам MOSFET.
Структура IGBT представлена на рисунке. В области стока нанесен еще один дополнительный p+-слой, который образует биполярный транзистор.
При закрытом ключе, напряжение приложено к n–-слою. При подаче на изолированный затвор управляющего напряжения, область р образует открытый канал, включая полевой транзистор, который в свою очередь отпирает биполярный p-n-p элемент. Между внешним коллектором и эмиттером начинает протекать ток. При этом ток стока полевой ячейки усиливается. При открытой биполярной ячейке, остаточное напряжение в n–-области падает еще благодаря потокам электронов и дырок.
Напряжение на включенном транзисторе определяется из выражения:
Где Uбэ – напряжение база-эмиттер открытого ключа, Rпол – сопротивление полевой ячейки, Iб – ток базы, Iк – ток коллектора, B – коэффициент передачи тока биполярной ячейки. Для снижения падения напряжения на открытых IGBT приборах применяют вертикальные затворы. Площадь ячейки транзистора уменьшают в 2-5 раз.
Падение напряжения на открытом IGBT зависит от температуры гораздо меньше аналогичного параметра MOSFET-транзисторов. На рисунке приведен график падения напряжения в функции температуры для 2 IGBT транзисторов и одного полевого прибора.
Как и биполярные транзисторы, IGBT способны накапливать заряд, который является причиной остаточного тока и нагрева прибора при запирании. Между электродами и переходами полевой и биполярной элементной ячейки образуются паразитные емкости. Время рассасывания заряда для IGBT прибора составляет всего 0,2-1,5 мкс, при коммутации с частотой 10-20 кГц для надежной работы транзисторов не нужно включать в схему дополнительные цепи.
Потери в транзисторах
Различают 3 типа потерь мощности на транзисторах: статические, динамические, в цепи управления.
Первые обусловлены токами утечки в запертом состоянии, сопротивлением полупроводникового кристалла. Статические потери рассчитывают по формуле:
где U(0) – падение напряжения, Iср и Irms – средний и среднеквадратичный ток соответственно.
Динамические потери возникают при открывании и запирании транзистора. Они определяются по графику и зависят от частоты коммутаций, температуры, напряжения на коллекторе, тока в момент переключения.
Потери в цепи управления полупроводниковым элементом ничтожно малы и при практических расчетах его величиной можно пренебречь.
В области частот 10-20 кГц потери мощности на IGBT-транзисторах малы и не вызывают сильного нагрева, который приводит к тепловому пробою.
Модули IGBT
Для снижения количества внешних элементов выпускают модули на базе IGBT. Они могут содержать дополнительные транзисторы, диоды и другие компоненты.
Такая конструкция облегчает ремонт преобразователей, позволяет наращивать мощность устройств путем установки дополнительных модулей.
Для коммутации больших токов, превышающих допустимое значение для одного транзистора, можно подключать модули параллельно.
В этом случае выбирают транзисторы IGBT с одинаковым пороговым напряжением во включенном состоянии. Разница в параметрах приводит к несимметричному току на транзисторах. При параллельном включении также учитывают увеличившуюся входную емкость, драйвер управления должен обеспечить заданную скорость коммутации.
Выбор модулей IGBT
Транзисторные модули выбирают по нескольким основным характеристикам:
Для выбора полупроводниковых модулей IGBT для преобразователей рекомендует следующий алгоритм:
Значение температуры выбирают с запасом. При превышении расчетного значения допустимой величины, необходим выбор модуля с большим номинальным током. При большом запасе выбирают IGBT с меньшим номинальным током и заново выполняют расчеты.
Управление модулями IGBT
Модули IGBT управляются драйверами. Микросхемы вырабатывают управляющие импульсы, обеспечивают коммутацию ключей в нужном частотном диапазоне, согласовывают работу полупроводниковых устройств с блоком управления.
При выборе драйверов для модулей, производители рекомендуют руководствоваться следующими рекомендациями:
Длительность импульсов напряжения выхода драйвера должна быть меньше времени коммутации транзисторов в 5-10 раз.
Внутреннее сопротивление драйвера управления должно выбираться в пределах диапазона конкретного модуля с учетом динамических потерь. Это необходимо для исключения перенапряжений, вызванных перезарядкой внутренних индуктивностей.
Напряжение запирания должно обеспечивать гарантированное отключение IGBT при любых условиях.
Для уменьшения помех необходимо подключать драйвер к модулю витой парой или устанавливать плату на контакты управления модулем.
Схема электропитания организовывается следующим образом: вначале напряжение подается на драйвер, затем на модуль.
Для предотвращения эффекта «защелкивания» паразитной p-n-p-n структуры, образуемой модулем и выходным каскадом микросхемы управления, исток биполярной ячейки, общий выход драйвера и отрицательную клемму сглаживающего фильтра присоединяют на общую шину.
Защита и охлаждение IGBT
Для ограничения перенапряжений при переключении транзисторов используют RC- и RCD-фильтры, включаемые в силовую цепь.
Для снижения больших перенапряжений при переключениях используют настройки драйвера: напряжение на выходе управляющего устройства должно снижаться меньше, чем в обычных условиях работы модуля и выключение электронных ключей в 2 этапа. На первом в цепь затвор-эмиттер включается резистор, затем, при достижении номинального значения тока коллектора, модуль резко отключается.
Для снижения выравнивающих токов в цепи эмиттера ставят резистор номиналом до 0,1 от эквивалентного сопротивления транзистора.
При большой разнице в задержке переключения, применяют индуктивности для равномерного распределения тока в транзисторах. Их параметры рассчитывают по формуле:
Где U – напряжение на шине, ∆I – отклонение от среднего значения тока, Dt – разность времени переключения.
Для борьбы с токами короткого замыкания в цепь «затвор – эмиттер» включают защиту.
Это предотвратит увеличение напряжения при резком скачке тока и выход полупроводникового устройства из режима насыщения.
При транспортировке, монтаже и эксплуатации IGBT должна учитываться чувствительность модулей к статическим зарядам. Для исключения пробоя электростатическим напряжением в цепь «затвор-эмиттер» включают сопротивление на 10-20 кОм. При транспортировке и хранении выводы затвора и эмиттера заворачивают перемычками, которые не снимают до монтажа. Работы по установке необходимо проводить в антистатических браслетах. Инструменты и измерительные приборы также необходимо заземлить.
При разработке преобразователей на базе IGBT модулей требуется предусмотреть эффективное охлаждение. Для теплового расчета применяется эквивалентная схема устройства:
Расчет осуществляется по формуле:
где РП – мощность потерь полупроводникового прибора, Rt h( р ) – тепловое сопротивление проводящего материала.
Монтаж модулей IGBT
Для эффективного охлаждения полупроводниковых модулей необходимо подготовить поверхность радиатора и обеспечить плотное прилегание подложки прибора к охладителю. Шероховатость поверхностей должна быть не более 10 мкм, отклонение от параллельности –меньше 20 мкм на расстоянии до 10 см.
Перед монтажом нужно убедиться, что на поверхностях нет твердых частиц, а также обезжирить подложку и радиатор любым неагрессивным к материалам компонентов растворителем.
Для установки модуля нужно обязательно применять термопасту без твердых включений. Характеристики материала должны сохраняться при любой температуре эксплуатации на протяжении всего срока службы. Рекомендованный запас по температуре – 10%. Перед нанесением пасты контактные поверхности охладителя и подложки обезжиривают безворсовой тканью, смоченной в растворителе. Толщину слоя пасты регулируют специальным гребешком. При нанесении теплопроводящего материала избегают его попадания на радиатор и в гнезда для резьбовых соединений.
Крепление силовых моделей осуществляют в следующем порядке:
Для затяжки применяют электронные инструменты с небольшой частотой вращения и функцией контроля усилий. Применять пневматику нельзя, такой инструмент недостаточно точен и может создать избыточное усилие затяжки, которое приводит к напряжениям на корпусе прибора и трещинам полупроводникового кристалла.
При монтаже запрещается изгибать силовые и управляющие контакты, подвергать корпус прибора ударам, прикладывать избыточные усилия затяжки.
Заключение
Силовые биполярные транзисторы с изолированным затвором обладают:
Полупроводниковые устройства могут применяться при напряжении 10 кВ и коммутации токов до 1200 А. На базе IGBT производят частотные преобразователи для электроприводов, бестрансформаторные конверторы и инверторы, сварочное оборудование, регуляторы тока для мощных приводов.
В области частот 10-20 кГц ключи на транзисторах GBT значительно превосходят устройства на полупроводниковых приборах других типов.